Общую топологию не нужно вопринимать как прям такой вот серьезный отдельный раздел, это скорее некоторый алгебраический (ну почти, по модулю операции бесконечного объединения открытых) аппарат для того чтобы:
1) Определять всякие топологические "склейки пространств по подпространствам" и прочие чисто топологические конструкции инвариантно. Скажем, пусть у вас есть тор
стандартно вложенный в
cтандартной параметризацией и вам хочется определить поверхность, которая получится если стянуть какой-нибудь выбранный меридиан тора в точку, чтобы как-то с ней дальше работать. Понятно, как такая поверхность должна выглядить, но вот написать её явную параметризацию в
- это некоторая не очень приятная задача. Общая топология же даёт простое описание такой поверхности в случае если нам интересны чисто топологические свойства полученной поверхности, но не интересен явный вид вложения в
. Более общо, общая топология даёт язык как работать со всякими поверхностями в
- стягивать куски в точку, склеивать по кускам, резать, подкурчиввать, добавлять точки на бесконечности, если нас интересует только топологические их свойства и не интересны явные параметризации или уравнения. Мотивацию изучения поверхностей в
думаю объяснять не нужно.
2) Как уже было сказано, на общетопологический случай переносятся некоторые аргументы из анализа, что бывает полезно в рассмотрении всяких там пространств функций: слабокомпактность шара в банаховом пространстве, Арцела-Асколи. Последняя позволяет доказывать что некоторые интегральные операторы компактны, а значит что существуют решения некоторых диф. уравнений. И так же всякие теоремы о продолжении: пучок непрерывных функций на паракомпактном Т2 тонок, и теоремы о вложении: полное метрическое компактное со счётной базой размерности n вкладывается в
- можно и без слово "метрическое" но лень думать как. То есть иногда из общетопологической теоремы даже что-то содержательное может следовать.
3) Всякие "комбинаторные" топологии которые возникают от того, что открытые множества это, морально "полуразрешимые свойства", то есть такие, что если оно выполняется мы это за конечное число ходов узнаем, а если нет - то можем не узнать никогда. Топология Зарисского на спектре кольца, на котороую, конечно, можно и с т.з. геометрии смотрять, топология на моделях теории первого порядка, топология на t-структурах эллиптической кривой и куча-куча такого рода примеров. Введение структуры топологического пространства на множестве позволяет использовать весь большой общетопологический аппарат для того чтобы говорить о сходимости последовательностей или склейках и мыслить в таких терминах бывает крайне полезно. Также это позволяет подключать топологическую интуицию и думать об элементах множества как о "настоящих точках настоящего геометрического пространства", что приятно. Скажем, я запомнил теорему о компактности из логики только после того как увидел ее в формулировке "пространство структур по модулю элементарной эквивалентности с естественной топологией компактно".
(причем самыми уважаемыми людьми форума)