2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 11^p+19^q
Сообщение07.11.2018, 00:10 
Аватара пользователя


01/12/11

8634
Докажите, что $11^p+19^q$ не может быть точной степенью (больше первой) натурального числа ни при каких простых $p$ и $q$.

 Профиль  
                  
 
 Re: 11^p+19^q
Сообщение07.11.2018, 08:58 


05/09/16
12128
Ktina в сообщении #1352259 писал(а):
ни при каких простых $p$ и $q$.

А при составных может?

 Профиль  
                  
 
 Re: 11^p+19^q
Сообщение07.11.2018, 12:10 
Аватара пользователя


01/12/11

8634
wrest
А Вы можете доказать, что и при составных не может?

 Профиль  
                  
 
 Re: 11^p+19^q
Сообщение07.11.2018, 12:13 


05/09/16
12128
Ktina в сообщении #1352329 писал(а):
А Вы можете доказать, что и при составных не может?

Мотидзуки может. Но его никто не понимает :mrgreen:

 Профиль  
                  
 
 Re: 11^p+19^q
Сообщение07.11.2018, 12:16 
Аватара пользователя


01/12/11

8634
wrest
Если брать $p$ и $q$ простыми, получается очень простая (с точки зрения необходимых для её решения знаний) задачка. Думаю, достаточно талантливому 5-6-класснику не составит особого труда её решить. А вот с составными сложнее. Да и есть ещё числа 1 и 0, помимо простых и составных.

 Профиль  
                  
 
 Re: 11^p+19^q
Сообщение08.11.2018, 01:23 
Аватара пользователя


01/12/11

8634
Я, наверно, опубликую решение и помещу в офф:

(Оффтоп)

Ясно, что $p$ и $q$ разной чётности, в противном случае всё выражение делилось бы на 2, но не делилось на 4.

Случай 1: $11^2+19^q=121+19^q$ даёт остаток 4 при делении на 8 (так как $q$ у нас нечётное), а значит, если степень, то только квадрат. Но это невозможно по модулю 3, так как 121 даёт 1 и степень числа 19 тоже даёт 1.

Случай 2: $19^2+11^q=361+11^q$ тоже даёт остаток 4 при делении на 8 (так как $q$ у нас нечётное), а значит, если степень, то только квадрат. Но квадраты на двойку не кончаются!

Вот и вся любовь! А вы: "засахарилось, засахарилось!" :mrgreen:

 Профиль  
                  
 
 Re: 11^p+19^q
Сообщение11.11.2018, 13:27 
Аватара пользователя


07/01/16
1612
Аязьма
1. $p$ и $q$ должны быть разной четности, иначе сумма не поделится на $4$; значит, одно из них двойка
2. искомая степень не может быть четным $2m$, иначе будет $19^p=(x^m-11)(x^m+11)$ или $11^q=(x^m-19)(x^m+19)$, но, обе скобки в правой части не могут делиться на основание левой части одновременно
3. значит, сумма должна делиться хотя бы на $8$, однако, по модулю $8$ сумма получается только $2$ или $4$, не ноль $\Rightarrow$ решений в простых $p,q$ нет

 Профиль  
                  
 
 Re: 11^p+19^q
Сообщение11.11.2018, 17:02 
Аватара пользователя


01/12/11

8634
waxtep
Большое спасибо!
В принципе, у Вас то же самое, что и у меня, только «задом на перёд».

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group