2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Ряд для π/8
Сообщение27.10.2018, 23:04 
Аватара пользователя


20/07/18
103
Покажите что
$\frac{\pi}{8}=\frac{\arctg(8)-\ln(2)}{2}+\frac{1}{3}\left( \frac{1}{3^3}+\frac{1}{5^3}+\frac{1}{7^3}\right)+\frac{1}{7}\left(\frac{1}{3^7}+\frac{1}{5^7}+\frac{1}{7^7}\right)+\frac{1}{11}\left( \frac{1}{3^{11}}+\frac{1}{5^{11}}+\frac{1}{7^{11}}\right)+...
$

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение29.10.2018, 18:34 
Аватара пользователя


20/07/18
103

(Подсказка 1)

$\sum _{k=1}^4\arctg \left ( \frac{1}{2k-1} \right )=\arctg(8)$

А как определить: задачу не решают потому что она скучная, или потому что сложная?

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение29.10.2018, 19:02 


05/09/16
12058
JohnDou
Мне кажется, что задаче не хватает какой-то красоты, что ли. То есть, скорее скучная.
Хотя лично для меня и сложная тоже -- надо гуглить как чего раскладывается, раскладывать, приводить... Ну хотя это тоже, пожалуй, в раздел "скучности" наверное.

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение29.10.2018, 19:15 
Аватара пользователя


20/07/18
103
wrest

... а как её можно улучшить?

(Оффтоп)

Да, мне тоже предыдущий ряд нравился больше. Но посмотрите на скорость сходимости! первых два (шесть) членов уже дают точное значение до 1000-ых(или 100-ых?)

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение29.10.2018, 20:22 


05/09/16
12058
JohnDou в сообщении #1350062 писал(а):
Но посмотрите на скорость сходимости!

А я и посмотрел. Увидел что да, сходится и да, довольно быстро.
JohnDou в сообщении #1350062 писал(а):
... а как её можно улучшить?

Не знаю, ну и я ж не один тут.
Меня смутили арктангенс и логарифм, как бы сразу стало понятно что должно к чему-то этакому сойтись. Просматриваются пять рядов, выписываем их и должно сократиться что-то. То есть план решения как бы сразу возник.
Может, не надо было писать к чему именно сходится, а просто спросить к чему.

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение29.10.2018, 21:19 
Заслуженный участник
Аватара пользователя


11/01/06
3824
Задача решается в лоб. Просто
$$\sum_{n=0}^{\infty}\frac{x^{4n+3}}{4n+3}=\int_{0}^{x}\frac{t^2\mathrm{d}t}{1-t^4}=\frac{1}{4}\ln\frac{1+t}{1-t}-\frac{1}{2}\arctg x.$$
Дальше сумму арктангенсов сворачиваем в один арктангенс.

Либо
$$\sum_{n=0}^{\infty}\frac{x^{4n+3}}{4n+3}=\frac{1}{4}\sum_{k=0}^{3}f\left(x\mathrm{e}^{2\pi\mathrm{i}k/4}\right)\mathrm{e}^{-6\pi\mathrm{i}k/4},\qquad f(x)=\sum_{n=1}^{\infty}\frac{x^n}{n}=-\ln(1-x),$$
если не лень возиться с комплексными числами.

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение29.10.2018, 22:56 
Аватара пользователя


20/07/18
103
RIP,

Хорошая работа! :appl: :appl: :appl:

Говоря о комплексных числах, а корни у этого чуда есть?

(Оффтоп)

Согласитесь, так смотрится эстетичнее: $\frac{1}{4}\ln n -\frac{1}{2}\sum _2^n\arctg \frac{1}{2k-1}=\frac{1}{3}\sum _2^n\frac{1}{(2n-1)^3}+\frac{1}{7}\sum _2^n\frac{1}{(2n-1)^7}+...$
Из этого так же не сложно показать что ряд из сумм обратных нечётных степеней расходится.


wrest,

вот как раз и хотел увидеть прямое док-во. Ладно, ваши замечания учту.

(Оффтоп)

Эх, и никому не нужна вычислительная Математика...

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение30.10.2018, 00:07 
Заслуженный участник
Аватара пользователя


11/01/06
3824
JohnDou в сообщении #1350107 писал(а):
Говоря о комплексных числах, а корни у этого чуда есть?
Стандартный трюк: если $f(z)=\sum c_nz^n$, $m\in\mathbb{N}$, $l\in\mathbb{Z}$, то
$$\frac{1}{m}\sum_{k=0}^{m-1}f\left(z\mathrm{e}^{2\pi\mathrm{i}k/m}\right)\mathrm{e}^{-2\pi\mathrm{i}kl/m}=\sum_{n\equiv l\mkern6mu(\mathrm{mod}\mkern6mu m)}c_nz^n.$$
Следует из
$$\frac{1}{m}\sum_{k=0}^{m-1}\mathrm{e}^{2\pi\mathrm{i}ak/m}=\begin{cases}1,&m\mid a,\\0,&m\nmid a.\end{cases}$$
Или я не о том?

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение30.10.2018, 05:10 


20/03/14
12041
 !  JohnDou
Я уже не раз правила red-шрифт в Ваших сообщениях, правилами форума зарезервированный для модераторов. Используйте другие цвета, если так нужно. Замечание за нарушение п. I.1.з.

Шрифт исправлен.

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение01.11.2018, 09:58 
Аватара пользователя


20/07/18
103
RIP,
что-то не сразу вспомнил что арктангенс - это комплексный логарифм (а ведь сам выводил! :facepalm: ). У него не более одного корня, следовательно, и у этого выражения тоже.
Насчёт подхода, хотел получить разложение на множители. Вами написанное позволит это сделать? (скажите просто да/нет. Дальше разберусь.). У меня где-то табличка валяется, где каждая элементарная функция расписана в виде $f(x+iy)=g(x,y)+ih(x,y)$, и я так делаю: нахожу корни для $g$ и $h$, смотрю какие совпадают.

Lia,

(Оффтоп)

Если он "зарезервирован" то почему доступен? Или это была какая-то проверка которую я не прошёл?

 i 

(Оффтоп)

Lia: вероятно, потому что эти три буквы есть на клавиатуре. Наличие не тех букв на клавиатуре представляет собой одну из основных проблем модерирования.

 Профиль  
                  
 
 Re: Ряд для π/8
Сообщение01.11.2018, 11:20 
Аватара пользователя


20/07/18
103
JohnDou в сообщении #1350718 писал(а):
... У него не более одного корня, следовательно, и у этого выражения тоже...

Неа, не правда.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 11 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Bing [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group