2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 09:49 
Аватара пользователя


01/12/11

8634
На олимпиаде «САММАТ-2015» предлагалась задача:

С помощью любых математических действий и минимального количества цифр 3
представьте число 2015.

В качестве правильного ответа указывается 8 троек (решение в Интернете найти не могу).

По всей видимости, подразумевалось вот такое решение:
$$\left(\dfrac{3+3}{3}\right)^{\left(\dfrac{33}{3}\right)}-33=2015$$

Но ведь в условии сказано: «любых математических действий», следовательно, можно использовать и факториалы, и корни, и логарифмы, и вообще всё, что угодно. Неужели 8 троек - это минимум?

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 10:50 
Аватара пользователя


11/02/15
1720
Пока получилось только с помощью шести.

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 11:02 
Аватара пользователя


01/12/11

8634
A.Edem
Не поделитесь?

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 11:27 


07/06/17
1124
Если факториалы можно, то сразу Ваше решение улучшается заменой $3+3=3!$

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 11:40 
Аватара пользователя


01/12/11

8634
Booker48
Вы правы, я иногда не замечаю того, что находится прямо перед носом :mrgreen:
Кроме того, психологический барьер был вызван тем, что у них там правильный ответ равен 8. Но уж у Искусственного-то Интеллекта подобных барьеров точно не будет!

-- 11.09.2018, 11:40 --

Но в Вашем случае 7 получается, а не 6.

-- 11.09.2018, 11:41 --

Может, можно как-то использовать $(3!)!=720$?

-- 11.09.2018, 11:42 --

Или $3^{3!}=729$?

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 11:47 
Аватара пользователя


11/02/15
1720
Ktina

(Оффтоп)

Если уж действительно ВСЁ позволено, то можно рекорд увеличить до пяти троек ;)
Изображение

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 12:57 
Аватара пользователя


01/12/11

8634
A.Edem
Шикарно!

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 13:10 
Аватара пользователя


11/02/15
1720
В первом примере нижнее основание корня из трёх (там, где необходимо было получить единицу) можно представить проще:
!(!3) = 1

(Оффтоп)

При увеличении восклицаний можно ещё улучшить результат:
((3!)!!!!)!!! + ((3!)!!!!)!!!!!! - !(!3) = 2015

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 14:39 
Аватара пользователя


01/12/11

8634
A.Edem
А вот если бы одной тройкой?

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 14:43 
Заслуженный участник
Аватара пользователя


16/07/14
9145
Цюрих
В арифметике обычно есть функциональный символ $S$. Если можно любые "кем-то используемые" обозначения - то $S(S(S(\ldots(S(3))\ldots)))$.

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 15:10 


14/01/11
3037
Раз уж всё позволено, можно и нулём троек обойтись. Сначала получаем единицу $1=Card(\varnothing)!$, а далее по накатанной. :-)

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 15:13 
Аватара пользователя


11/12/16
13850
уездный город Н
Раз уж всё позволено, то запись числа $2015$ в виде $2015$ удовлетворяет условию задачи (в котором пропущено слово "только").

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 15:49 
Аватара пользователя


11/02/15
1720
Ktina в сообщении #1338108 писал(а):
A.Edem
А вот если бы одной тройкой?

Только из двух троек получается :-(
Известными мне приёмами из одной, к сожалению, не получилось..

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 22:09 
Аватара пользователя


01/12/11

8634
mihaild в сообщении #1338109 писал(а):
В арифметике обычно есть функциональный символ $S$.

Сумма цифр?

 Профиль  
                  
 
 Re: Записать 2015 минимальным количеством троек
Сообщение11.09.2018, 22:11 
Заслуженный участник
Аватара пользователя


16/07/14
9145
Цюрих
Ktina в сообщении #1338197 писал(а):
Сумма цифр?
Следующее число. Сумма цифр явно недостаточно фундаментальная операция, чтобы иметь отдельное обозначение в формальной арифметике.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 22 ]  На страницу 1, 2  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group