2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 11:12 
Аватара пользователя


01/12/11

8634
В произведении трёх натуральных чисел каждый сомножитель уменьшили на 5. Найдите наименьшее $n\in\mathbb{N}$, при котором произведение не могло увеличиться ровно в $n$ раз.

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 11:29 
Заслуженный участник


20/08/14
11869
Россия, Москва
Ktina в сообщении #1335892 писал(а):
В произведении трёх натуральных чисел каждый сомножитель уменьшили на 5. Найдите наименьшее $n\in\mathbb{N}$, при котором произведение не могло увеличиться ровно в $n$ раз.
При уменьшении сомножителей произведение уменьшается. Соответственно ответ $n=\min(\mathbb{N})=1$. :mrgreen:

-- 01.09.2018, 12:01 --

Забавно что при увеличении сомножителей на 5 ответ остаётся тем же, т.к. произведение непременно увеличится и значит не сможет стать ровно в один раз больше.

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 12:03 


21/05/16
4292
Аделаида
И при уменьшении произведения тоже самое.

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 13:43 
Заслуженный участник
Аватара пользователя


13/08/08
14495
В условии не сказано, что после вычитания должны быть натуральные разности.

$\dfrac{(2-5)\cdot(2-5)\cdot(9-5)}{2\cdot2\cdot9}=1$

То есть произведение таки может увеличиться в 1 раз. А вот ещё:

$\dfrac{(1-5)\cdot(1-5)\cdot(16-5)}{1\cdot1\cdot16}=11$

$\dfrac{(1-5)\cdot(1-5)\cdot(8-5)}{1\cdot1\cdot8}=6$

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 13:53 


07/06/17
1162
Чушь написал.

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 14:29 
Аватара пользователя


01/12/11

8634
Наверное, всё-таки, придётся дать ответ, поскольку не зная ответа психологически трудно найти решение.
Или ещё подождать?

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 14:33 


07/06/17
1162
Лучше подождать, принцип-то понятен.

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 14:50 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Написано коряво: Найти наименьшее $n$, при котором произведение не может увеличится в $n$ раз. Произведение от $n$ не зависит. Что тогда означают слова "при котором".
Имеется функция трёх натуральных аргументов: $f(k,l,m)=\dfrac{(k-5)\cdot(l-5)\cdot(m-5)}{k\cdot l\cdot m}$. Надо найти минимальное натуральное значение, которое она не принимает.
Скорее всего, это двойка. Навскидку не удаётся подобрать натуральную тройку, при которой произведение увеличивается ровно в два раза. А перебор делать неохота. Хотя он и не очень большой.
А как же ещё тогда можно ухитриться трактовать условие?

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 15:31 


07/06/17
1162
Перебор совсем небольшой, т.к. первые два сомножителя меньше $3$. Несложно увидеть, что $n \in (1, 3, 4, 6, 8, 11, 12, 14)$

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 16:51 
Аватара пользователя


07/01/16
1612
Аязьма
$1,3,20$ как раз дает двойку ;-)

-- 01.09.2018, 17:22 --

а $1,2,30$ - пятерку

-- 01.09.2018, 17:43 --

в общем, семерка - наш кандидат.

 Профиль  
                  
 
 Ответ на вопрос темы
Сообщение01.09.2018, 18:18 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Вот пришлось тревожить счёты. Итак, на вопрос заглавия темы "Во сколько раз могло увеличиться произведение?" можно ответить:
$1,2,3,4,5,6,8,11,12,14,15$.
Рассуждений практически нет, только разве на вопрос: почему нельзя больше 15.

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение01.09.2018, 22:55 
Аватара пользователя


07/01/16
1612
Аязьма
gris в сообщении #1335936 писал(а):
Рассуждений практически нет
Может быть, можно сделать интереснее, заменив в исходном условии пятерку на произвольное натуральное $k$; тогда, например, тройка $\{1,k-2,2k-2\}$ дает увеличение в один раз (кхм), а $\{1,k-2,k^2-k\}$ - в два раза для любого $k$ (кстати даже необязательно натурального). Или еще так: существуют ли такие натуральные $k$, что произведение может увеличиться в любое из в принципе возможных $1,2,\ldots,k^2-2k$ раз?

-- 01.09.2018, 23:05 --

Угу, максимально возможное значение $n=k^2-2k$ тоже всегда достигается на $\{1,1,k(k-1)^2\}$

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение02.09.2018, 15:50 
Аватара пользователя


07/01/16
1612
Аязьма
waxtep в сообщении #1335979 писал(а):
существуют ли такие натуральные $k$, что произведение может увеличиться в любое из в принципе возможных $1,2,\ldots,k^2-2k$ раз?
ну, тут конечно $k=3$ такое единственное.
Если я не проврался в подсчетах, для небольших $k$ все это выглядит так:$$\begin{tabular}{c|ccc|c}
k & c & c_b & c_g & n_b^{\min} \\
\hline
3 & 3 & 0 & 3 & - \\
4 & 8 & 1 & 7 & 4 \\
5 & 15 & 4 & 11 & 7 \\
6 & 24 & 8 & 16 & 11 \\
7 & 35 & 13 & 22 & 9 \\
8 & 48 & 22 & 26 & 12 \\
9 & 63 & 27 & 36 & 11
\end{tabular}$$Здесь, $c_b$ - количество недостижимых значений $n$, $c_g$ - достижимых, $c=c_b+c_g=k^2-2k$ - количество принципиально возможных значений $n$, и $n_b^{\min}$ - минимальное недостижимое $n$. Есть ощущение, что $c_g\sim k^2$ и можно ребром ставить вопрос о существовании и значении $\underset{k\to\infty}\lim\dfrac{c_g}c$

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение02.09.2018, 19:44 


21/05/16
4292
Аделаида
waxtep в сообщении #1336074 писал(а):
Есть ощущение, что $c_g\sim k^2$

Тогда ваш предел равнялся бы единице, а он, очевидно, не может ей равняться.

 Профиль  
                  
 
 Re: Во сколько раз могло увеличиться произведение?
Сообщение02.09.2018, 21:00 
Аватара пользователя


07/01/16
1612
Аязьма
kotenok gav, я имел в виду, что $c_g=\operatorname{O}(k^2)$

Вот еще интересная штука, почему в исходной задаче семерка не работает для пятерки, наводящие соображения (до доказательства, по-моему, немного не дотягивает). Попробуем искать какое-нибудь "довольно большое" $n$, недостижимое при данном $k$, т.е. чтобы $$(k-x)(k-y)(z-k)=nxyz$$ не имело решений в натуральных (все скобки в левой части также натуральны). Введем обозначения $a\equiv(k-x)(k-y),b\equiv xy$ и перепишем уравнение: $$(a-nb)z=ka$$ "Большое" $n$ имеет шанс проявить себя только при $x=y=1$; а, чтобы по делителям левая и правая части отличались, сделаем $a-nb$ максимально возможным собственным делителем $a+1$ или $a+2$, то есть: $$a-nb=\dfrac{a+2-a\bmod2}2$$ Отсюда получаем $$n=\left\lfloor\dfrac{k^2-2k}2\right\rfloor$$ как кандидата в недостижимые $n$. Для $k=5$ (исходная задача) как раз $n=7$, ну и в целом для $4\le k\le9$ это работает

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу 1, 2  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group