2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Почленное сложение двух геометрических прогрессий
Сообщение16.08.2018, 15:23 
Аватара пользователя


01/12/11

8634
Бесконечная последовательность вещественных чисел образована почленным сложением двух геометрических прогрессий. Может ли эта последовательность начинаться с таких чисел (именно в указанном порядке)?

а) 1, 1, 7, 20;

б) 1, 2, 3, 5;

в) 1, 2, 3, 4.

 Профиль  
                  
 
 Re: Почленное сложение двух геометрических прогрессий
Сообщение16.08.2018, 15:35 
Заслуженный участник
Аватара пользователя


16/07/14
9145
Цюрих
Т.к. симметрические многочлены от двух переменных выражаются через степенные суммы степеней $1$ и $2$, то третий и последующие члены ваших последовательностей легко выражаются через первые два. И остается просто проверить, равны ли они указанным.

 Профиль  
                  
 
 Re: Почленное сложение двух геометрических прогрессий
Сообщение17.08.2018, 01:18 
Аватара пользователя


07/01/16
1611
Аязьма
У меня получилось, (а,б) - можно, (в) - нельзя.
Вообще как-то странно арифметической прогрессии быть суммой двух геометрических, вот.
Делал в лоб, стараясь не терять изящества симметрии слишком рано: пусть $ap^{i-1}+bq^{i-1}=x_i, i=1,2,3,4$. Тогда, после преобразований туда-сюда, показатели прогрессий $p,q$ получаются корнями квадратного уравнения $x^2-cx+k=0$, где $k=\dfrac{x_2x_4-x_3^2}{x_1x_3-x_2^2},c=\dfrac{k^3x_1^2+k^2x_2^2-kx_3^2-x_4^2}{k^2x_1x_2-x_3x_4}$
Для наших случаев:
а) $k=-\dfrac{29}6,c=\dfrac{57839}{25194}$ и соответствующие $p,q$ можно увидеть вот здесь, а $a,b$ я не стал считать, потому что они наверняка такие же страшные;
б) $k=-1,c=1: p,q=\dfrac{1\pm\sqrt5}2,a,b=\dfrac1 2(1\pm\dfrac3{\sqrt5})$, симпатично;
в) $k=1, c=2$ и упс! $p=q=1$ - не бывает.

-- 17.08.2018, 01:26 --

+ (б) это ж фибоначии, можно было не считать, конечно :-)

 Профиль  
                  
 
 Re: Почленное сложение двух геометрических прогрессий
Сообщение17.08.2018, 01:39 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
waxtep в сообщении #1333002 писал(а):
Вообще как-то странно арифметической прогрессии быть суммой двух геометрических, вот.
Так в условии задачи слова «арифметическая» и нет.

 Профиль  
                  
 
 Re: Почленное сложение двух геометрических прогрессий
Сообщение17.08.2018, 01:42 
Аватара пользователя


07/01/16
1611
Аязьма
Aritaborian в сообщении #1333003 писал(а):
Так в условии задачи слова «арифметическая» и нет.
Есть! В пункте (в), это замечание относится только к нему

 Профиль  
                  
 
 Re: Почленное сложение двух геометрических прогрессий
Сообщение17.08.2018, 01:48 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
Тот факт, что некая последовательность начинается с чисел 1, 2, 3, 4, вовсе не обязывает её быть арифметической и продолжаться числом 5.

 Профиль  
                  
 
 Re: Почленное сложение двух геометрических прогрессий
Сообщение17.08.2018, 11:07 
Аватара пользователя


07/01/16
1611
Аязьма
Aritaborian, это я в традициях плохого детектива сразу засветил главного подозреваемого, убийца - садовник, так сказать.
Легко убедиться, что для любого куска арифметической прогрессии длиной четыре, складывание из двух геометрических так же не проходит. Кроме случая, когда все $x_i$ равны друг другу, конечно. У меня есть смутные воспоминания, что подобная задача на форуме была, но, специально не искал

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group