Не понимаю, чем полученный ответ проще изначального? Три корня вместо двух, да еще деление.. Может быть, не стОило к общему знаменателю приводить?
Я бы предположил, что постановка задачи пришла из незапамятных времён, когда не было калькуляторов. И память была натренирована больше, значения корней целых чисел помнились (собственно, даже было такое упражнение на укрепление памяти). И тогда отказ от извлечения корня из многозначного дробного числа был экономией сил. Сейчас, конечно, смысл не просматривается, кроме как упражнения, "гимнастики ума".
-- 08 июл 2018, 18:16 --Откуда в уравнении взялось "2*
". 21 ясно, оно в уравнении есть. А вот
и 2 откуда ? Как и после второго равно взялось четыре дроби, хотя изначально давалось два числа.
Приём, который бывает полезен в такого рода задачах на упрощение, когда нечто под корнем и желательно из-под корня вытащить, состоит в том, что ежели под корнем полный квадрат
, то корень исчезнет, аннигилировавшись с двойкой в показателе. Однако у нас не три слагаемых, а два, поэтому надо одно отнести к
, а второе разбить на два квадрата. Одно из двух слагаемых под корнем целое, второе иррациональное, корень из чего-то, и очевидно, что этот самый корень не может быть квадратом, он
, а целое надо разбить на два слагаемых,
и
.
Поэтому домножаем корень на два и делим на два, чтобы не изменилось значение. И тут начинаем играть с вариантами.
Может, a=21, b=1, или a=3, b=7 (поскольку задача учебная, то мы вправе надеяться, что некрасивых многозначных чисел не будет), или ещё как. Не забывая о двойке в знаменателе, которую надо куда-то приткнуть, к a или b. Проверяем тем, что
должно быть равно целому слагаемому. С какой-то попытки получаем подходящие а и бэ и, наконец, "упрощаем".