Меня самого смущал этот вопрос, но решил его оставить.
Могу ошибаться, но кажется вероятность того, что "ткнув" в случайную группу мы получим еще неоткрытую группу равна 1.
Ваша интуиция на верном пути. Чтобы обрести ясность, советую открыть любой подходящий учебник на страницах, посвящённых азам теории меры. Например, подойдёт соответствующая глава из
Колмогорова, Фомина Элементы теории функций и функционального анализа. Предыдущие главы можно не читать, они в данном случае не нужны, кроме параграфа про кольца множеств.
Вкратце: мера есть обобщение таких понятий как "длина", "объём", "площадь". Мы ведь можем говорить о 99% процентах отрезка, хотя в нём бесконечное множество точек. Но понятие меры шире, чем объёма в
, оно включает разные другие случаи.
Впрочем, никакого полезного способа установить меру на множестве всех групп (даже если такое множество, по аксиомам некоторой теории множеств, есть) наверняка не существует.
Но тут следующий вопрос: как правильно понимать "неизвестная", "неоткрытая" группа?
Можно понимать по-разному в зависимости от цели. Например, группа известна, если ей дали собственное название; или если верно предыдущее либо она является простой конечной, которые, как известно, классифицированны; или ещё как-нибудь. Всё равно при сколько-нибудь осмысленном = полезном = помогающем решать математические задачи понимании известности и открытости известные и открытые группы будут островком в безбрежном океане неизвестных и неоткрытых.
И еще, множество всех групп является множеством?
Вряд ли. Думаю, при желании тут можно сформулировать свой аналог известных парадоксов.
Если хотите, можете обратить внимание на категорию всех групп. Категория в общем случае множеством в ZFC не является. Но обычно её можно понимать как класс в NBG.
Впрочем, вопросами о парадоксах теории множеств можно не задаваться, здесь соль не в них. И без них разнообразие таково, что ни в какую систему не поместится.
Вот, скажем, возьмём множество всех групп вида
, где
пробегает булеан
в ZFC, а
все бинарные операции на каждом конкретном
, удовлетворяющие аксиомам группы. Это уж точно множество. Ну и что, как все такие группы классифицировать в каком-нибудь разумном смысле?
-- 06.06.2018, 00:20 --Извините, но мне показалось, что ответ, к которому вы хотите подвести вашего собеседника, не вполне точен.
Извините, но мне показалось, что Вам неправильно показалось, к какому именно ответу я хочу подвести собеседника.