Не, ну физика тут ни при чем. Это чисто математический фокус.
Физическое заклинивание порисходит, когда поверхности начинают соприкасаться сплошняком, а не в "одной точке". Если в точке минимума радиусы кривизны различны, зазор между колесом и кривой ведет себя как
и заклинивания заведомо не происходит, поскольку сила трения вполне себе способна синхронизировать вращение колеса и движение его ЦТ.
Если же в этой точке радиусы кривизны совпадают, то зазор себя ведет скорее всего как
. Вроде как тоже заклинивания не наблюдается. Но чем противна эта точка? А тем что при приближении к ней ЦТ колеса движется по траектории с радиусом кривизны
, который в критической точке превращается в ноль. А это значит что реакция опоры превращается в бесконечность. То есть скорее всего в этой точке траектория ЦТ теряет гладкость, то есть теряет гладкость направление скорости ЦТ. Но у нас ведь если нет проскальзывания, энергия не теряется. А значти угловая скорость вращения - гладкая функция. Значит в этой точке произойдет рассогласование вращения и движения ЦТ и должна возникнуть прокрутка.