2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Задача из Виленкина (комбинаторика)
Сообщение01.02.2018, 22:37 


01/02/18
1
У меня не понимается задача из Виленкин / Комбинаторика, № 27, с. 25. Т. к. она пользует условие предыдущей задачи, я приведу их обеих тут:
Цитата:
26. Из Лондона в Брайтон ведут 2 шоссе, соединённые 10 просёлочными дорогами (рис. 3). Сколькими способами можно проехать из Лондона в Брайтон так, чтобы дорога не пересекала себя?
27. Пусть при том же условии два путешественника выезжают из Лондона по разным шоссе. Сколькими способами может произойти путешествие так, что ни один участок шоссе они не проезжают в одном и том же направлении?
Изображение

Над задачей № 26 я справился, хотя рассуждал не так как в ответе. Я думал: по каждой просёлочной можно либо проехать, либо нет — значит 2¹⁰ = 1024 варианта, + в начале можно выбрать верхнюю или нижную дорогу, то есть всё умножается на 2 и ответ 2048. В ответе написано:
Цитата:
В 11 точках пути есть выбор между двумя возможностями. Поэтому число путей равно 2¹¹ = 2048.

То есть ответ совпал, хотя логика другая. А со второй задачей № 27 подстава, потому что в ответе написано:
Цитата:
Так как выбор в начальной точке уже сделан, то остаётся 2¹⁰ = 1024 возможностей.

Но я здесь не понимаю! Я думал: 1-ый путешественник может выбрать любой маршрут как в № 26, поэтому для него те же 2048 варианта. При этом если 1-ый выбрал, то маршрут 2-го определяется однозначно (проверьте: постройте любой маршрут для 1-го путешественника и попробуете построить > 1 маршрута для 2-го), так что ответ 2048. Поэтому не понимаю, как в ответе 1024. То есть не только почему такое число 1024 но и почему путей стало меньше чем в № 26?

 Профиль  
                  
 
 Re: Задача из Виленкина (комбинаторика)
Сообщение01.02.2018, 23:07 
Заслуженный участник
Аватара пользователя


09/09/14
6328
Zhoomartbek
Всё верно. Просто в условии предполагается, что путешественники уже выехали из Лондона каким-то одним определённым образом и нужно найти варианты дальнейшего путешествия. Условие сформулировано не совсем однозначно.

 Профиль  
                  
 
 Re: Задача из Виленкина (комбинаторика)
Сообщение02.02.2018, 02:44 
Заслуженный участник


16/02/13
4214
Владивосток
Zhoomartbek в сообщении #1289252 писал(а):
хотя логика другая
На всякий случай уточню: логика, собственно, та же. Формулировки чуть-чуть отличаются.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: F111mon


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group