2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 N^4+AN^2+1 - квадрат
Сообщение01.02.2018, 20:44 
Заслуженный участник


17/09/10
2143
Докажите, что для любого целого числа $N$ найдется целое $A\ne\pm{2}$ такое, что выражение $N^4+AN^2+1$ является квадратом целого числа.

 Профиль  
                  
 
 Re: N^4+AN^2+1 - квадрат
Сообщение01.02.2018, 22:42 
Модератор
Аватара пользователя


11/01/06
5710
Например, $A=3N^2 + 4$.

 Профиль  
                  
 
 Re: N^4+AN^2+1 - квадрат
Сообщение01.02.2018, 23:15 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
$N^4+AN^2+1=X^2$

$N^2(N^2+A)=X^2-1$

Для любого $X^2\equiv 1 \mod N^2\ \ A=\dfrac{X^2-1}{N^2}-N^2.$ Случай $A=\pm 2$ тривиальный $X=N^2\pm 1$, но другие $X$ найдутся всегда. Например $2N^2\pm 1$. А, ну я ломлюсь в открытые двери (:

Исправлено.

 Профиль  
                  
 
 Re: N^4+AN^2+1 - квадрат
Сообщение02.02.2018, 00:13 
Заслуженный участник


17/09/10
2143
Имею в запасе более замысловатое $A=\dfrac{(N-2)^2{(N+1)^2}-8}{4}$

 Профиль  
                  
 
 Re: N^4+AN^2+1 - квадрат
Сообщение02.02.2018, 02:56 


18/08/14
58
$a c\, {{y}^{4}}+a t\, {{y}^{2}}+{{b}^{2}}$ - квадрат, если $t=a\, {{h}^{2}}\, {{y}^{2}}-c\, {{y}^{2}}+2 b h$

 Профиль  
                  
 
 Re: N^4+AN^2+1 - квадрат
Сообщение02.02.2018, 10:11 
Заслуженный участник


17/09/10
2143
AlexSam в сообщении #1289315 писал(а):
$a c\, {{y}^{4}}+a t\, {{y}^{2}}+{{b}^{2}}$ - квадрат, если $t=a\, {{h}^{2}}\, {{y}^{2}}-c\, {{y}^{2}}+2 b h$

Это обобщающие вариации на тему естественного ответа maxal.
Более замысловатое $A$ отсюда не получается. Оно из другой оперы.
Вопрос: откуда оно взялось.

 Профиль  
                  
 
 Re: N^4+AN^2+1 - квадрат
Сообщение02.02.2018, 17:40 
Модератор
Аватара пользователя


11/01/06
5710
scwec в сообщении #1289359 писал(а):
Более замысловатое $A$ отсюда не получается. Оно из другой оперы.
Вопрос: откуда оно взялось.

Слишком расплывчатый вопрос. Найти подходящее $A$ можно взяв любой многочлен $f(x)$ с целыми коэффициентами и положив $A=\frac{(f(N)N^2+1)^2-1-N^4}{N^2}=f(N)^2N^2+2f(N)-N^2$. При желании можно также разрешить коэффициентам $f$ быть полуцелыми, если $f(1)$ является целым. Ваш пример получается при $f(x) = \frac{x-1}{2}$.

 Профиль  
                  
 
 Re: N^4+AN^2+1 - квадрат
Сообщение02.02.2018, 21:33 
Заслуженный участник


17/09/10
2143
maxal, хотя сам подход очевиден, но извлечение из решения "замысловатого" $A$ (ключевое слово многочлен) очень остроумно.
У меня $A$ получилось из других соображений. Правда, исходное уравнение рассматривалось с произвольным целым свободным членом, единица как частный случай. Для единицы рассматривалось $A=a^2-2$. Затем уравнение приводилось к форме Вейерштрасса, находились целые точки на эллиптической кривой и затем по ходу дела это $A$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group