2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу 1, 2  След.
 
 Новое решение теоремы Ферма при n=2
Сообщение11.12.2017, 18:35 


11/12/17

6
Известно решение теоремы Ферма $x^n + y^n = z^n$ при $n = 2$
$x^2 + y^2 = z^2$
Старое решение:
Минимальные пифагоровы тойки:
$x = 2 k m ; y = k^2 - m^2 ; z = k^2 + m^2$, где $ k , m$ - взаимно простые числа различной четности.
Новое решение:
Минимальные пифагоровы тойки:
$x = i j ; y = ( i^2 - j^2) / 2 ; z = ( i^2 + j^2 ) / 2$, где $ i , j$ - взаимно простые нечетные числа.

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение11.12.2017, 18:38 


21/05/16
4292
Аделаида
Это одно и тоже решение.

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение11.12.2017, 18:41 


11/12/17

6
А иначе и быть не могло.
Но второе решение встречается очень редко.
Это не моя заслуга.
Многие об этом не знают.
Пусть узнают.

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение11.12.2017, 19:06 
Заслуженный участник
Аватара пользователя


09/09/14
6328
Fermatik44 в сообщении #1274060 писал(а):
Но второе решение встречается очень редко.
Не так уж редко -- на каждом компьютере, где есть доступ в Википедию :) Но да, иногда удобнее пользоваться таким представлением. Вы бы хоть доказали, что любая стандартная тройка встретится здесь и наоборот, чтоб не зря тему создавать.

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение11.12.2017, 20:01 


11/12/17

6
Лови формулы перехода.
$i = k + m , j = k - m$
$k = ( i - j ) / 2 , m = ( i - j ) / 2$

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение11.12.2017, 21:21 


21/11/10
546
Fermatik44 в сообщении #1274087 писал(а):
Лови формулы перехода.

Fermatik44
Лови новое уравнение Ферма для $n=2$
$$(x+y-z)^2=2(z-x)(z-y)$$
Решения выскакивают самым естественным образом:)
$z-x=2p^2$
$z-y=q^2$
$x+y-z=2pq$

$z=2p^2+q^2+2pq$
$x=q^2+2pq$
$y=2p^2+2pq$

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 08:41 


21/09/16
46
Вот еще новые формулы для уравнения $x^2+y^2=z^2$ :

$z=k_1(k^4+4)$

$x=k_1(k^4-2k^2-4k)$ или $x=k_1(k^4-2k^2+4k)$

$y=k_1(4-2k^2-2k^3)$ или $y=k_1(4-2k^2+2k^3)$

-- 12.12.2017, 09:03 --

И еще формулы:

$x=k_1(4-(k^2-2)^2)$

$y=k_1(4+2(k^2-2)+(-2k)(k^2-2))$ или $y=k_1(4+2(k^2-2)-(-2k)(k^2-2))$

$ z=k_1(-2(k^2-2)+4k-(k^2-2)^2)$ или $z=k_1(-2(k^2-2)-4k-(k^2-2)^2)$

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 12:36 


26/08/11
2108
nimepe в сообщении #1274277 писал(а):
Вот еще новые формулы для уравнения $x^2+y^2=z^2$ :

$z=k_1(k^4+4)$

$x=k_1(k^4-2k^2-4k)$ или $x=k_1(k^4-2k^2+4k)$

$y=k_1(4-2k^2-2k^3)$ или $y=k_1(4-2k^2+2k^3)$
А вам не кажется, что кроме общего множителя $k_1$ (кстати, писать его не надо, все тут люди догадливые), есть еще и общий множитель $k^2+2k+2$. И если его убрать (а его надо убрать) останется ерунда. И другие формулы...тоже бред.
Вобщем, спасибо большое, но не надо!

Других формул НЕТУ. Все "другие" получаются из известной путем подстановки. Кому это интересно!

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 15:37 


21/09/16
46
ДА....

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 15:59 
Заслуженный участник
Аватара пользователя


23/07/05
17985
Москва
Почему это называется "теоремой Ферма"?

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 16:15 


11/12/17

6
К сожалению в формулы перехода вкралась ошибочка!
Не порядок, ее надо исправить.
$i = k + m , 
j = k - m$
$k = ( i + j ) / 2 , 
m = ( i - j ) / 2$

$x^2 + y^2 = z^2$
Старое решение:
Минимальные пифагоровы тойки:
$x = 2 k m ; 
y = k^2 - m^2 ; 
z = k^2 + m^2$,
где $ k , m$ - взаимно простые числа различной четности.
Новое решение:
Минимальные пифагоровы тойки:
$x = i j ; 
 = ( i^2 - j^2) / 2 ; 
z = ( i^2 + j^2 ) / 2$,
где $ i , j$ - взаимно простые нечетные числа.[

$k = 2 , m = 1$ ;
$x = 2 k m = 4 ; 
y = k^2 - m^2 = 2^2 - 1^2 = 3; 
z = k^2 + m^2 = 2^2 + 1^2 =5$,
$4^2 + 3^2 = 2 5 = 5^2$,
$( 4 , 3 , 5 ) = ( 3, 4, 5 )$.

$i = k + m = 2 + 1 = 3, 
j = k - m = 2 - 1 =1$,
$i =3 , j =1$,
$x = i j = 3\cdot 1 = 3$;
$y = ( i^2 - j^2 ) / 2 = ( 3^2 - 1^2 )  / 2 = ( 9 -1 ) /2 = 4$ ;
$z = ( i^2 + j^2 ) / 2 = ( 3^2 + 1^2 ) / 2 = ( 9 + 1 ) / 2 = 5$,
$3^2 + 4^2 = 2 5 = 5^2$,
$( 3 , 4 , 5 ) = ( 4, 3, 5 )$.

$k = ( i + j ) / 2 = ( 3 + 1 ) / 2 = 2 , 
m = ( i - j ) / 2 = ( 3 - 1 ) / 2 = 1$
$ k = 2 , m = 1$.

-- 12.12.2017, 16:26 --

Теорема Ферма гласит: нет таких натуральных чисел $ x$ , $ y$ и $ z$ ,
которые бы при целой степени $ n > 2$ удовлетворяли уравнению $\ x^n+y^n=z^n$.
При $ n > 2$ уравнение решений не имеет, а при $ n = 2$ уравнение $\ x^2+y^2=z^2 $ имеет решения.
Уравнение $\ x^2+y^2=z^2 $ является частным случаем уравнения Ферма $\ x^n+y^n=z^n$ при $ n = 2$,
поэтому она и называется теоремой Ферма при $ n = 2$ .

Ну, не нравится Вам теорема Ферма, назовите ее теоремой Пифагора.

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 16:44 


21/05/16
4292
Аделаида
И не теорема Пифагора, а пифагоровы тройки.

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 19:39 


11/12/17

6
$x = 2 k m ; $
$y = k^2 - m^2 ; $
$z = k^2 + m^2$
$x^2 + y^2 = z^2$
$4 k^2 m^2 + ( k^2 - m^ 2 )^ 2 = k^4 + 2 k^2 m^2 + m^4 = ( k^2 + m^2)^2$



$x = i j ; $
$y= ( i^2 - j^2) / 2 ; $
$z = ( i^2 + j^2 ) / 2$
$x^2 + y^2 = z^2$
$ ( i j )^2 + ( i^2 - j^2 )^2 / 4 = i^2 j^2 + ( i^4 - 2 i^2 j^2 + j^4 )  / 4 =$
$ ( i^4 + 2 i^2 j^2 + j^4 )  / 4 = ( ( i^2 + j^2 ) / 2 )^2$

А почему не целочисленное решение теоремы Пифагора?

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 19:53 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Fermatik44 в сообщении #1274423 писал(а):
решение теоремы Пифагора?

'Решение теоремы' - недопустимое косноязычие. Решение может быть у задачи или у уравнения. А у теоремы может быть доказательство, опровержение, частный случай и т.п.

 Профиль  
                  
 
 Re: Новое решение теоремы Ферма при n=2
Сообщение12.12.2017, 19:55 
Аватара пользователя


22/07/08
1416
Предместья
Fermatik44 в сообщении #1274423 писал(а):
$x = 2 k m ; $
$y = k^2 - m^2 ; $
$z = k^2 + m^2$

$x = i j ; $
$y= ( i^2 - j^2) / 2 ; $
$z = ( i^2 + j^2 ) / 2$

$i=k\sqrt{2}$
$j=m\sqrt{2}$
Или наоборот...
$k=\frac{i}{\sqrt{2}}$
$m=\frac{j}{\sqrt{2}}$
А зачем эти коэффициенты?!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 17 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: ydgin


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group