2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Тривиум по ИИ и Машинному Обучению?
Сообщение10.11.2017, 21:06 


01/05/17
50
Где я?
Существует Математический Тривиум В.И.Арнольда. Есть ли подобный набор задач и вопросов по ИИ и Машинному Обучению? Простым нагугливанием найти пока не удалось.

 Профиль  
                  
 
 Re: Тривиум по ИИ и Машинному Обучению?
Сообщение23.11.2017, 11:23 


10/03/16
4444
Aeroport
Самому стало интересно:) Вот мой список на данный момент:

Бэкграунд

1. Теория вероятностей и случайных процессов
2. Комбинаторика
3. Теория графов
4. Линейная алгебра
5. Теория матриц
6. Теория оптимизации функций

Форграунд

0. Регрессионные методы
1. Оптимизация гладких функций
2. Генетические и бионические алгоритмы
3. Полносвязные нейросеть
4. Сверточные нейросети, deep learning
5. Решающие деревья
6. Ансамбли алгоритмов, бустинг и бэггинг

 Профиль  
                  
 
 Re: Тривиум по ИИ и Машинному Обучению?
Сообщение23.11.2017, 17:47 


12/07/15
3363
г. Чехов
Начинающим рекомендую посмотреть видеолекции К.В. Воронцова (вводный курс машинного обучения), потом видеолекции Конушина Антона (про компьютерное зрение). Затем пройти практическое обучение у Воронцова на Coursera.org.

Далее научиться участвовать в kaggle. Это и будет тривиумом.

 Профиль  
                  
 
 Re: Тривиум по ИИ и Машинному Обучению?
Сообщение27.11.2017, 07:04 


01/05/17
50
Где я?
ozheredov

Хороший список. В него надо бы добавить CS, т.е. computer science. На CS промахнулись 9 из 10 наших кандидатов на работу.

Хотелось бы превратить обсуждение в список более конкретных вопросов по этим темам. Например, что можно сказать о собственных подпространствах коммутирующих матриц? Или, на тему теор. вер-а, приведите пример нескоррелированных зависимых случайных величин.

 Профиль  
                  
 
 Re: Тривиум по ИИ и Машинному Обучению?
Сообщение27.11.2017, 13:21 


10/03/16
4444
Aeroport
Paragraph

1. Вы про то что они имеют хотя бы один общий собственный вектор?
2. Кси и кси квадрат, при условии что третий нецентральный момент равен нулю

 Профиль  
                  
 
 Re: Тривиум по ИИ и Машинному Обучению?
Сообщение28.11.2017, 01:16 


01/05/17
50
Где я?
ozheredov
Цитата:
1. Вы про то что они имеют хотя бы один общий собственный вектор?

Да, и даже лучше: собственные подпространства совпадают (но это не тоже самое, что совпадение всех собственных векторов).
Цитата:
2. Кси и кси квадрат, при условии что третий нецентральный момент равен нулю

Есть примеры доступные даже для школьников, но идея та же самая.

Именно такого сорта вопросы хочется для МО и ИИ. Вот, например, типовой вопрос:

"Имеется <описание набора данных>. Какие трудности возникнут при применении к нему <название метода>?"

 Профиль  
                  
 
 Re: Тривиум по ИИ и Машинному Обучению?
Сообщение28.11.2017, 01:24 
Заслуженный участник
Аватара пользователя


06/10/08
6422
Paragraph в сообщении #1269770 писал(а):
Да, и даже лучше: собственные подпространства совпадают (но это не тоже самое, что совпадение всех собственных векторов).
Это неверно, например, $\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix}$ и $\begin{pmatrix}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}$.

 Профиль  
                  
 
 Re: Тривиум по ИИ и Машинному Обучению?
Сообщение28.11.2017, 04:48 


01/05/17
50
Где я?
Xaositect
Согласен, спасибо за поправку. Правильная формулировка: для коммутирующих матриц собственные подпространства одной матрицы являются инвариантными подпространствами другой.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: MoonWatcher


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group