2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 продолжить и обобщить ряд
Сообщение14.07.2017, 16:34 


14/06/12
93
Помогите продолжить ряд: 1) $H$; 2) $\frac{L^2}{2}-\frac{3H^2}{2}$; 3) $\frac{3HL^2}{2}-\frac{5H^3}{2}$; 4) $\frac{35H^4}{8}+\frac{3L^4}{8}-\frac{15H^2L^2}{4}$; 5) $\frac{63H^5}{8}-\frac{35H^3L^2}{4}+\frac{15HL^4}{8}$; ...; n)... , где $H,L\in\mathbb{R}$.

 Профиль  
                  
 
 Re: продолжить и обобщить ряд
Сообщение14.07.2017, 16:44 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Попробуем начать с минимальной подсказки: полиномы Лежандра.

 Профиль  
                  
 
 Re: продолжить и обобщить ряд
Сообщение14.07.2017, 16:56 


14/06/12
93
Только без рекурсии:
$a_1=H$;
$a_2=\frac{L^2-3Ha_1}{2}$;
$a_3=\frac{2a_1L^2+5Ha_2}{3}$;
$a_4=\frac{3a_2L^2-7Ha_3}{4}$;
$a_5=\frac{4a_3L^2+9Ha_4}{5}$;
...;
$a_n=\frac{(n-1)a_{n-2}L^2+(-1)^{n-1}(2n-1)Ha_{n-1}}{n}$

-- 14.07.2017, 17:58 --

Ох, ох...))) совсем под конец дня голова не варит... svv, спасибо Вам большое.

 Профиль  
                  
 
 Re: продолжить и обобщить ряд
Сообщение14.07.2017, 16:58 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Вы написали «без рекурсии» и привели рекуррентную формулу. Вам подходит такой вариант?
Будьте внимательны со знаками, у Вас небольшое отличие от стандартных полиномов, требующее дополнительного множителя.

 Профиль  
                  
 
 Re: продолжить и обобщить ряд
Сообщение14.07.2017, 16:59 


14/06/12
93
Вопрос снят.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group