2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Неравенство с факториалами
Сообщение20.06.2017, 13:55 
Заслуженный участник


26/06/07
1929
Tel-aviv
Докажите, что:
$$\left(1!2!...n!\right)^2\leq(1+2+...+n)!$$

 Профиль  
                  
 
 Re: Неравенство с факториалами
Сообщение20.06.2017, 15:53 


30/03/08
196
St.Peterburg
arqady в сообщении #1227454 писал(а):
Докажите, что:
$$\left(1!2!...n!\right)^2\leq(1+2+...+n)!$$


При $n=1$ все выполняется .

Пусть верно при $ n=N$
$$(N+1)!^2 \le \left(\dfrac {N^2+N}{2}+1\right)...\left ( \dfrac {N^2+N}{2} +(N+1)\right)$$

$$\sqrt[N+1]{(N+1)!} \le \dfrac {1}{N+1}(1+...+(N+1))= \dfrac {N+2}{2}$$
$$ \left ( \dfrac {N+2}{2} \right )^2 \le \dfrac {N^2+N}{2}+1$$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group