2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 17:49 


28/01/15
662
Сейчас плотно занялся изучением пределов, производной и и дифференциалов.
Изучаю, вроде понятно, но тут же шаг влево-вправо снова неясно.
Что я понял (своими словами). Производная - это скорость изменения зависимой переменной относительно независимой переменной и равна отношению приращения зависимой переменной к отношению приращения независимой переменной при стремлении приращения независимой переменной к $0$.
$f'(x) = \lim_{\Delta x\to 0} \frac {\Delta f(x)}{\Delta x} = \frac {df(x)}{dx}$
На этом моменте понимание заканчивается... Напишу, что непонятно.
Приращение $\Delta x$, насколько я понимаю, может принимать 3 принципиальных значения:
1. $\Delta x = 0$
2. $\Delta x > 0$
2.1. $\Delta x = dx$
2.2. $\Delta x > dx$
Приращение $dx$ называется дифференциалом независимой переменной, или дифференциалом аргумента.
Приращение $\Delta f(x)$, насколько я понимаю, аналогично может принимать 3 принципиальных значения:
1. $\Delta f(x) = 0$
2. $\Delta f(x) > 0$
2.1. $\Delta f(x) = df(x)$
2.2. $\Delta f(x) > df(x)$
Приращение $df(x)$ называется дифференциалом зависимой переменной, или дифференциалом функции.
Я так понимаю, что $dx$ и $df(x)$ являются бесконечно малыми величинами, т.е. они больше нуля, но меньше любого конечного заданного наперед числа верно?
То есть идёт $0$, а потом сразу же $dx$ без малейшего промежутка, и $0$ и $df(x)$ аналогично.
Теперь если разбирать варианты соотношений межу $0$ и $df(x)$, то получаются 3 принципиальных варианта:
1. $\Delta x = 0 \Rightarrow \Delta f(x) = 0$
2. $\Delta x > 0 \Rightarrow \Delta f(x) > 0$
2.1. $\Delta x = dx \Rightarrow \Delta f(x) = df(x)$
2.2. $\Delta x > dx \Rightarrow \Delta f(x) > df(x)$
Верно?
Дальше как раз самый непонятный момент. Почему бесконечно малые величины в окрестности разных точек не должны быть равны между собой?!
Этот вопрос возник на основании возможных сравнений бесконечно малых величин:
1. $ dx < df(x)$
2. $ dx = df(x)$
3. $ dx > df(x)$
Я понимаю, что производная показывают как раз, во сколько раз они различаются:
1. $0$
2. $C \in \Large \mathbb {R}$
3. $\infty$
Но я в упор не могу это наглядно представить себе, помогите) Да и еще это деление: одного порядка (с особым выделением числа $1$) и разного порядка (высокого и низкого) - что это за порядок: линейный и нелинейный, степенная или показательная функция или что вообще?
Далее, хочу спросить, верна ли такая запись (никогда её не видел, но она возможна на основании свойств предела с одной стороны, и невозможна с другой стороны, так как в этом свойстве указано, что знаменатель не должен быть равен $0$, а он как раз и равен):
$\lim_{\Delta x\to 0} \frac {\Delta f(x)}{\Delta x} = \frac {\lim_{\Delta x\to 0} \Delta f(x)}{\lim_{\Delta x\to 0} \Delta x}$
А так как $\lim_{\Delta x\to 0} \frac {\Delta f(x)}{\Delta x} = \frac {df(x)}{dx}$, то:
$\lim_{\Delta x\to 0} \Delta f(x) = df(x)$
$\lim_{\Delta x\to 0} \Delta x = dx$
Равен 0 всё-таки знаменатель $\lim_{\Delta x\to 0} \Delta x$ или только стремится к 0?
И если эти записи неверны, то какие есть формулы для связи $\Delta f(x)$ и $df(x)$, а также $\Delta x$ и $dx$?
И ещё один из ключевых вопросов, который мне неясен (это уже во многом к физике): производная - это скорость изменения приращения функции относительно приращения аргумента в точке или же между двумя точками?
Поясню: допустим, у нас есть какая-то производная и мы получили её какое-то значение, например, $4$ в точке с координатами $(x_0;f(x_0))$. Так вот, эта скорость рассчитана всё-точки в одной точке $(x_0;f(x_0))$ или между двумя точками $(x_0;f(x_0))$ и $(x_0 + dx;f(x_0) + df(x))$?
Очень надеюсь, что с вашей помощью смогу ответить эти вопросы для себя.

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 18:07 
Заслуженный участник
Аватара пользователя


26/01/14
4643
Solaris86 в сообщении #1226823 писал(а):
Приращение $\Delta x$, насколько я понимаю, может принимать 3 принципиальных значения:
1. $\Delta x = 0$
2. $\Delta x > 0$
2.1. $\Delta x = dx$
2.2. $\Delta x > dx$
Нет. Если $x$ - независимая переменная, то $\Delta x$ и $dx$ - одно и то же.
Solaris86 в сообщении #1226823 писал(а):
Приращение $\Delta f(x)$, насколько я понимаю, аналогично может принимать 3 принципиальных значения:
1. $\Delta f(x) = 0$
2. $\Delta f(x) > 0$
2.1. $\Delta f(x) = df(x)$
2.2. $\Delta f(x) > df(x)$
Приращение $df(x)$ называется дифференциалом зависимой переменной, или дифференциалом функции.
Непонятно, откуда Вы это взяли. Или сами придумали? Напишите определение дифференциала.
Solaris86 в сообщении #1226823 писал(а):
Я так понимаю, что $dx$ и $df(x)$ являются бесконечно малыми величинами, т.е. они больше нуля, но меньше любого конечного заданного наперед числа верно?
Так думали, кажется, в 17-м веке. В современных учебниках мат.анализа нет ничего даже близко похожего.
Solaris86 в сообщении #1226823 писал(а):
1. $\Delta x = 0 \Rightarrow \Delta f(x) = 0$
2. $\Delta x > 0 \Rightarrow \Delta f(x) > 0$
2.1. $\Delta x = dx \Rightarrow \Delta f(x) = df(x)$
2.2. $\Delta x > dx \Rightarrow \Delta f(x) > df(x)$
Верно?
Это ерунда.
Solaris86 в сообщении #1226823 писал(а):
Далее, хочу спросить, верна ли такая запись (никогда её не видел, но она возможна на основании свойств предела с одной стороны, и невозможна с другой стороны, так как в этом свойстве указано, что знаменатель не должен быть равен $0$, а он как раз и равен):
$\lim_{\Delta x\to 0} \frac {\Delta f(x)}{\Delta x} = \frac {\lim_{\Delta x\to 0} \Delta f(x)}{\lim_{\Delta x\to 0} \Delta x}$
Запись неверна, и Вы правильно объяснили, почему.
Solaris86 в сообщении #1226823 писал(а):
А так как $\lim_{\Delta x\to 0} \frac {\Delta f(x)}{\Delta x} = \frac {df(x)}{dx}$, то:
$\lim_{\Delta x\to 0} \Delta f(x) = df(x)$
$\lim_{\Delta x\to 0} \Delta x = dx$
Нет, это неверный вывод. Если отношение двух величин стремится к отношению двух чисел, то отсюда не следует, что каждая величина стремится к соответствующему числу.
Solaris86 в сообщении #1226823 писал(а):
Поясню: допустим, у нас есть какая-то производная и мы получили её какое-то значение, например, $4$ в точке с координатами $(x_0;f(x_0))$. Так вот, эта скорость рассчитана всё-точки в одной точке $(x_0;f(x_0))$ или между двумя точками $(x_0;f(x_0))$ и $(x_0 + dx;f(x_0) + df(x))$?
В одной точке. Называется "мгновенная скорость".
Solaris86 в сообщении #1226823 писал(а):
Очень надеюсь, что с вашей помощью смогу ответить эти вопросы для себя.
Нет, у Вас представления настолько далеки от верных, что ответы на вопросы тут не помогут. Тут надо взять учебник и читать с самого начала. Если непонятны какие-то конкретные определения, теоремы в учебнике, то выписывайте их сюда, можем помочь разобраться.

Вы придумали себе что-то очень сложное и малопонятное. На самом деле, в мат.анализе всё гораздо проще.

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 18:10 
Заслуженный участник


14/10/14
1207
Solaris86 в сообщении #1226823 писал(а):
Сейчас плотно занялся изучением пределов, производной и и дифференциалов.
Что вы читали?

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 18:20 
Заслуженный участник
Аватара пользователя


09/02/14

1377

(Оффтоп)

Slav-27 в сообщении #1226829 писал(а):
Так думали, кажется, в 17-м веке. В современных учебниках мат.анализа нет ничего даже близко похожего.


В совсем современных на самом деле есть. ^^

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 18:23 
Заслуженный участник
Аватара пользователя


26/01/14
4643

(Оффтоп)

kp9r4d в сообщении #1226832 писал(а):
В совсем современных на самом деле есть. ^^
Про нестандартный анализ я знаю. Но это явно не для ТС.
И в современных учебниках именно мат.анализа (а не нестандартного анализа) - таки нету.

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 18:24 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва

(Оффтоп)

Mikhail_K в сообщении #1226834 писал(а):
И в современных учебниках именно мат.анализа (а не нестандартного анализа) - таки нету.

Т.е. эпсилоны-дельты отменили что ли?

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 18:29 
Заслуженный участник
Аватара пользователя


26/01/14
4643

(Оффтоп)

Metford в сообщении #1226836 писал(а):
Т.е. эпсилоны-дельты отменили что ли?
А, вон Вы о чём. Ну, если это так трактовать, то да. Но формулировку ТС сложно так трактовать.
Solaris86 в сообщении #1226823 писал(а):
Я так понимаю, что $dx$ и $df(x)$ являются бесконечно малыми величинами, т.е. они больше нуля, но меньше любого конечного заданного наперед числа верно?

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 18:32 
Заслуженный участник
Аватара пользователя


09/02/14

1377

(Оффтоп)

Mikhail_K в сообщении #1226834 писал(а):
Про нестандартный анализ я знаю. Но это явно не для ТС.
И в современных учебниках именно мат.анализа (а не нестандартного анализа) - таки нету.


Да я не про нестандартный, а про весьма стандартную идею о том что нильпотенты хорошо подходят для описания инфинитезимальной информации. Ну типа что $p(x+\varepsilon) = p(x) + \varepsilon p'(x)$ ($p$ - многочлен, допустим) где $\varepsilon^2=0$; нестандартный анализ, насколько я знаю, вещь более тонкая и связана с какими-то там нестандартными моделями теории множеств и таким всем.

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 18:33 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва

(Оффтоп)

Mikhail_K
Этот разговор начался несколько раньше в другой теме, поэтому я примерно понимал, о чём речь идёт.

Ладно, Вы меня успокоили: а то я уж побоялся, что некоторые товарищи до анализа капитально добрались...

kp9r4d, цитата не моя.

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 19:05 


05/09/16
11538
Solaris86
Мне кажется вам сперва надо разобраться с пределами и бесконечно малыми (большими) величинами.
Бесконечно малые (большие) величины это НЕ ЧИСЛА! Бесконечно малая (большая) величина не может быть равна какому-то числу.

Касательно производных и дифференциалов, возможно понятней будет если перейти к геометрической иллюстрации, где видно отличие приращение функции от ее дифференциала:
Изображение

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 19:09 
Заслуженный участник


27/04/09
28128
Тут уже написали, что дифференциал — функция двух переменных $x$ и $\Delta x$? Может, это что-то прояснит? У семи нянек дитя без глазу.

 Профиль  
                  
 
 Re: Трудности с пониманием пределов, производной и дифференциала
Сообщение18.06.2017, 19:22 
Заслуженный участник


20/08/14
11178
Россия, Москва
К картинке от wrest стоит наверное добавить связь $\Delta x, \Delta y, \Delta f(x)$ с $dx, dy, df(x)$.

-- 18.06.2017, 19:40 --

Например хоть отсюда.
Ещё одна родственная тема.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group