2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение18.06.2017, 15:26 


28/01/15
670
Спасибо всем, понял ошибки, исправляю.
Сейчас плотно занялся изучением пределов, производной и и дифференциалов. думаю, если я их пойму, то более тут вас тревожить не буду (постараюсь, по крайней мере).
Изучаю, вроде понятно, но тут же шаг влево-вправо снова неясно.
Поэтому хотел бы тут изложить как понял, а вы бы меня поправили (надеюсь, не признают оффтопиком математическим).
Что я понял (своими словами). Производная - это скорость изменения зависимой переменной относительно независимой переменной и равна отношению приращения зависимой переменной к отношению приращения независимой переменной при стремлении приращения независимой переменной к $0$.
$f'(x) = \lim_{\Delta x\to 0} \frac {\Delta f(x)}{\Delta x} = \frac {df(x)}{dx}$
На этом моменте понимание заканчивается... Напишу, что непонятно.
Приращение $\Delta x$, насколько я понимаю, может принимать 3 принципиальных значения:
1. $\Delta x = 0$
2. $\Delta x > 0$
2.1. $\Delta x = dx$
2.2. $\Delta x > dx$
Приращение $dx$ называется дифференциалом независимой переменной, или дифференциалом аргумента.
Приращение $\Delta f(x)$, насколько я понимаю, аналогично может принимать 3 принципиальных значения:
1. $\Delta f(x) = 0$
2. $\Delta f(x) > 0$
2.1. $\Delta f(x) = df(x)$
2.2. $\Delta f(x) > df(x)$
Приращение $df(x)$ называется дифференциалом зависимой переменной, или дифференциалом функции.
Я так понимаю, что $dx$ и $df(x)$ являются бесконечно малыми величинами, т.е. они больше нуля, но меньше любого конечного заданного наперед числа верно?
То есть идёт $0$, а потом сразу же $dx$ без малейшего промежутка, и $0$ и $df(x)$ аналогично.
Теперь если разбирать варианты соотношений межу $0$ и $df(x)$, то получаются 3 принципиальных варианта:
1. $\Delta x = 0 \Rightarrow \Delta f(x) = 0$
2. $\Delta x > 0 \Rightarrow \Delta f(x) > 0$
2.1. $\Delta x = dx \Rightarrow \Delta f(x) = df(x)$
2.2. $\Delta x > dx \Rightarrow \Delta f(x) > df(x)$
Верно?
Дальше как раз самый непонятный момент. Почему бесконечно малые величины в окрестности разных точек не должны быть равны между собой?!
Этот вопрос возник на основании возможных сравнений бесконечно малых величин:
1. $ dx < df(x)$
2. $ dx = df(x)$
3. $ dx > df(x)$
Я понимаю, что производная показывают как раз, во сколько раз они различаются:
1. $0$
2. $C \in \Large \mathbb {R}$
3. $\infty$
Но я в упор не могу это наглядно представить себе, помогите) Да и еще это деление: одного порядка (с особым выделением числа $1$) и разного порядка (высокого и низкого) - что это за порядок: линейный и нелинейный, степенная или показательная функция или что вообще?
Далее, хочу спросить, верна ли такая запись (никогда её не видел, но она возможна на основании свойств предела с одной стороны, и невозможна с другой стороны, так как в этом свойстве указано, что знаменатель не должен быть равен $0$, а он как раз и равен):
$\lim_{\Delta x\to 0} \frac {\Delta f(x)}{\Delta x} = \frac {\lim_{\Delta x\to 0} \Delta f(x)}{\lim_{\Delta x\to 0} \Delta x}$
А так как $\lim_{\Delta x\to 0} \frac {\Delta f(x)}{\Delta x} = \frac {df(x)}{dx}$, то:
$\lim_{\Delta x\to 0} \Delta f(x) = df(x)$
$\lim_{\Delta x\to 0} \Delta x = dx$
Равен 0 всё-таки знаменатель $\lim_{\Delta x\to 0} \Delta x$ или только стремится к 0?
И если эти записи неверны, то какие есть формулы для связи $\Delta f(x)$ и $df(x)$, а также $\Delta x$ и $dx$?
И ещё один из ключевых вопросов, который мне неясен (это уже во многом к физике): производная - это скорость изменения приращения функции относительно приращения аргумента в точке или же между двумя точками?
Поясню: допустим, у нас есть какая-то производная и мы получили её какое-то значение, например, $4$ в точке с координатами $(x_0;f(x_0))$. Так вот, эта скорость рассчитана всё-точки в одной точке $(x_0;f(x_0))$ или между двумя точками $(x_0;f(x_0))$ и $(x_0 + dx;f(x_0) + df(x))$?
Очень надеюсь, что с вашей помощью смогу ответить эти вопросы для себя.

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение18.06.2017, 15:52 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
Вы зря разбрасываетесь. Эту бы задачу закончить... А насчёт производных лучше бы тему отдельную открыть в математическом разделе. Некоторые моменты здесь отмечу.

Solaris86 в сообщении #1226793 писал(а):
Приращение $\Delta x$, насколько я понимаю, может принимать 3 принципиальных значения:

Приращение аргумента может принимать не три значения. В лучшем случае различают с какой стороны происходит стремление аргумента к нужной точке.
Solaris86 в сообщении #1226793 писал(а):
2. $\Delta x > 0 \Rightarrow \Delta f(x) > 0$

Это нечто близкое к определению возрастания функции. С производными связано очень опосредованно.
Solaris86 в сообщении #1226793 писал(а):
Этот вопрос возник на основании возможных сравнений бесконечно малых величин:
1. $ dx < df(x)$
2. $ dx = df(x)$
3. $ dx > df(x)$

Это вообще что-то нехорошее. Вы понимаете, что сравниваете разные величины? Например, зависит почему-то температура стержня от его координаты. И Вы хотите сравнить, кто больше: приращение координаты при сдвиге вдоль стержня или соответствующее приращение температуры?
Solaris86 в сообщении #1226793 писал(а):
Да и еще это деление: одного порядка (с особым выделением числа $1$) и разного порядка (высокого и низкого) - что это за порядок: линейный и нелинейный, степенная или показательная функция или что вообще?

К нулю (например) можно стремиться по-разному. Сравните поведение в нуле трёх функций: $y=x$, $y=x^2$, $y=x^3$. Все стремятся при $x\to 0$ к нулю, но по-разному. Функция $x^2$ при $x\to 0$ представляет собой бесконечно малую величину более высокого порядка, чем $y=x$. Формально потому, что $\lim\limits_{x\to0}\frac{x^2}{x}=0$. По тем же причинам $x^3$ при $x\to 0$ - малость более высокого порядка чем $y=x$ и $y=x^2$.
Дальше, я уже выше приводил пример, что при $x\to 0$ имеем $\sin x\simeq x-\frac{1}{6}x^3$. Оставите первое слагаемое справа - получите линейное приближение. Остальные слагаемые - малости более высокого порядка по сравнению с первым ненулевым (линейным в данном случае) приближением.
Это в двух словах - а Вам это нужно изучать серьёзно. Читайте Фихтенгольца - и будет Вам счастье.

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение18.06.2017, 16:57 


28/01/15
670
Metford в сообщении #1226798 писал(а):
Вы зря разбрасываетесь. Эту бы задачу закончить... А насчёт производных лучше бы тему отдельную открыть в математическом разделе. Некоторые моменты здесь отмечу.

На счёт задачи:
Solaris86 в сообщении #1225846 писал(а):
Вот условие.
"Диск радиуса 20 см вращается согласно уравнению $\varphi = 3 - t + 0.1 t^3$. Определить тангенциальное, нормальное и полное ускорения точек на окружности диска для момента времени t = 10 с."

$a_\tau = \varepsilon \cdot R$
$\varepsilon = \frac {d^2}{dt^2}(3 - t + 0.1 t^3) = 0.6 t = 0.6 \cdot 10 = 6 (\frac {\text{рад}}{\text{с}^2})$
$a_\tau =  \varepsilon \cdot R = 6 \cdot 0.2 = 1.2 (\frac {\text{м}}{\text{с}^2})$
$a_n =  \omega^2 \cdot R$
$\omega = \frac {d}{dt}(3 - t + 0.1 t^3) = -1 + 0.3 t^2 = -1 + 0.3 \cdot 100 = 29 (\frac {\text{рад}}{\text{с}})$
$a_n = \omega^2 \cdot R = 841 \cdot 0.2 = 168.2 (\frac {\text{м}}{\text{с}^2})$
$a = \sqrt {a_\tau^2 + a_n^2} = \sqrt {1.44 + 28289.24} = 168.2 (\frac {\text{м}}{\text{с}^2})$

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение18.06.2017, 17:01 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
Так. Числа не проверял, формулы написаны правильно. Надеюсь, что Вы знаете, откуда они все взялись.

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение18.06.2017, 17:17 


28/01/15
670
Metford в сообщении #1226816 писал(а):
Так. Числа не проверял, формулы написаны правильно. Надеюсь, что Вы знаете, откуда они все взялись.

Вашими стараниями и стараниями всех, кто мне тут помогал, теперь знаю)

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение18.06.2017, 19:31 


22/06/09
975
Solaris86 в сообщении #1226793 писал(а):
Изучаю, вроде понятно, но тут же шаг влево-вправо снова неясно.

А вы как думали? Нужно много материала самостоятельно проработать и набрать больше знаний и опыта, прежде чем вы перестанете барахтаться или плыть по заданному течению и начнёте плыть в любом направлении, каком захочется. Будете работать - со временем оно придёт.

Solaris86 в сообщении #1226793 писал(а):
Приращение $\Delta x$, насколько я понимаю, может принимать 3 принципиальных значения:

Приращение аргумента $\Delta x$ может принимать любое ненулевое значение (точнее, любое, но в данном случае рассматривать нулевое приращение для нас смысла не имеет). Приращение функции $\Delta f(x)$ зависит от приращения аргумента (это, надеюсь, очевидно?). Если приращение аргумента равно нулю, то и приращение функции будет равно нулю, и что вы получите, поделив ноль на ноль? Суть нахождения производной состоит в том, что мы берём приращение (аргумента и соответствующее функции) очень маленьким и смотрим, какое у нас получается отношение приращения функции к аргументу. И чем меньше мы берём приращение, тем ближе наше отношение получается к некому числу (если функция хорошая - дифференцируемая в этой точке), которая зависит от точки, которую мы рассматриваем. Предел этих отношений - и есть наша производная, которую мы условно обозначаем $\frac {df}{dx}$. Обозначение это удобно тем, что мы можем (внаглую) взять и выдрать эти $df$ и $dx$ и работать с ними как с отдельными выражениями - умножать на них, делить, сокращать в дробях и т.д. Очень удобно (хотя строго говоря, эта "дробь" - цельное, неделимое обозначение производной). Можно даже формально определить эти выражения, например $dx$ - это такое произвольное число (для интуиции о нём полезно мыслить как об очень маленьком :) ), а $df$ - насколько бы увеличилась функция, если бы она была линейной (т.е. мы заменяем график функции в этой точке касательной к графику в этой точке - если изменение мало, то касательная очень близка к реальной функции), при приращении аргумента на $dx$. Это линейная часть приращения функции. Тогда их отношение $\frac {df}{dx}$ будет действительно равно производной функции.

Solaris86 в сообщении #1226793 писал(а):
Поясню: допустим, у нас есть какая-то производная и мы получили её какое-то значение, например, $4$ в точке с координатами $(x_0;f(x_0))$. Так вот, эта скорость рассчитана всё-точки в одной точке $(x_0;f(x_0))$ или между двумя точками $(x_0;f(x_0))$ и $(x_0 + dx;f(x_0) + df(x))$?

Производная найдена, разумеется, в одной точке. Значение производной просто зависит от того, как ведёт себя функция в окрестности точки.

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение19.06.2017, 11:22 
Заслуженный участник


29/11/11
4390
$\Delta(x^2) = (x + \Delta x)^2 - x^2 = 2 x \Delta x + (\Delta x)^2$

При стремлении $\Delta x$ к нулю, оба слагаемых стремятся к нулю, но второе делает это "быстрее". Для очень маленьких $\Delta x$ получается

$\Delta(x^2) = 2 x\Delta x + (\Delta x)^2 \approx 2 x \Delta x$

И вот тут неочевидный момент, при переходе от "очень преочень маленьких" к "бесконечно малым", это равенство перестает быть приближенным. Не становится погрешность пренебрежимо малой, а полностью исчезает, равенство совершенно строгое

$d(x^2) = 2 x\cdot dx$

Вот я помню в школе у меня сложилось совершенно превратное представление о том что "а теперь отбрасываем бесконечно малые высших порядков" это переход к каким то приближенным аппроксимациям, что это какая то приближенная арифметика. Нет, это строгая арифметика, без всяких погрешностей, просто у нее несколько другие правила. Из нескольких слагаемых некоторые можно взять и выкинуть совершенно честно, не внеся этим никаких погрешностей.

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение19.06.2017, 12:20 


05/09/16
12041
rustot в сообщении #1227008 писал(а):
$\Delta(x^2) = (x + \Delta x)^2 - x^2 = 2 x \Delta x + (\Delta x)^2$

При стремлении $\Delta x$ к нулю, оба слагаемых стремятся к нулю, но первое делает это "быстрее".

второе быстрее.

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение19.06.2017, 12:23 
Заслуженный участник


29/11/11
4390
wrest в сообщении #1227015 писал(а):
второе быстрее.


ну да, опечатался

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение19.06.2017, 12:25 


27/08/16
10172

(Оффтоп)

rustot в сообщении #1227008 писал(а):
И вот тут неочевидный момент, при переходе от "очень преочень маленьких" к "бесконечно малым", это равенство перестает быть приближенным. Не становится погрешность пренебрежимо малой, а полностью исчезает, равенство совершенно строгое
Конечно, систематическое изучение матанализа на первом курсе института для правильного понимания этих вопросов незаменимо.

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение19.06.2017, 17:08 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Вообще-то перед тем как изучать производные, следовало лы изучить пределы.
Потому что работа с производными подразумевает инкапсуляцию пределов.
Но, чтобы каждый раз не использовать громоздких формул с пределами, их сократили до производных. Впрочем, та же идеология зашита и в интегралах.
Надо постепено привыкнуть к тому, что математика представляет собой множство сокращений. Грубо говоря, это наука о тождественных преобразованиях и общепринятых соглашениях.

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение19.06.2017, 20:01 


22/06/09
975
По-другому они называются абстракциями. Все науки основаны на них. Абстракция позволяет управлять сложностью.
Развитая способность абстрагировать - одна из отличительных особенностей человека по сравнению с остальными представителями его рода. И почему некоторые люди их так не любят?

 Профиль  
                  
 
 Re: Формула угла при вращательном движении с угловым ускорением.
Сообщение20.06.2017, 03:44 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Наверное у каждого есть какой-то предел насыщения этими абстракциями.
Потом математики любят абстракции над абстракциями.
Что уже частенько для меня является порогом насыщения. :D

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 58 ]  На страницу Пред.  1, 2, 3, 4

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: s4kkkk


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group