На множестве натуральных чисел невозможно задать такое распределение вероятностей, чтобы после удаления одного числа вероятности не менялись.
Изменю формулировку: после выборки натурального числа оно возвращается обратно в натуральный ряд, поэтому вероятность повторной выборки не меняется и имеем обычное биномиальное распределение.
Теперь о функции Мертенса -
, где
-функция Мебиуса. По определению
, если
- имеет четное число простых делителей. Определим математическое ожидание количества таких чисел, если выбрать наудачу
натуральных чисел без квадратов. Математическое ожидание количества таких чисел на основании биномиального распределения -
, так как
по предположению гипотезы. Среднеквадратичное отклонение количества таких чисел на основании биномиального распределения -
. Аналогичные показатели имеет функция Мертенса при суммировании выбранных натуральных чисел, имеющих четное число простых делителей, свободных от квадратов. Таким образом, полная аналогия количества выпадений "орлов" при подбрасывания монеты.
Аналогичные данные мы получим, если будем определять характеристики второй случайной величины количества натуральных чисел имеющих нечетное число простых делителей -
,
.
А вот дальше получается какое-то несоответствие книге Дербишира. Теорема 15.1 на стр. 304 в обозначениях для примера -
.
По определению
, если
- имеет нечетное число простых делителей. Поэтому математическое ожидание значения функции Мертенса, полученной при суммировании функций Мебиуса по таким выбранным числам, равно
. Дисперсия значений функции Мертенса, полученной при суммировании функций Мебиуса по таким выбранным числам (на основании биномиального распределения) равна
и совпадает со значением дисперсии для первой случайной величины. Так как первая и вторая случайные величины независимы, то математическое ожидание функции Мертенса, полученной при суммировании выбранных натуральных чисел, имеющих четное и нечетное число простых делителей без квадратов и 1 равно
. Дисперсия функции Мертенса, полученной при суммировании выбранных натуральных чисел, имеющих четное и нечетное число простых делителей без квадратов и 1 равна сумме дисперсий независимых случайных величин
. Поэтому среднеквадратичное отклонение функции Мертенса, полученной при суммировании выбранных натуральных чисел, имеющих четное и нечетное число простых делителей без квадратов и 1 равно
. Сравните с Теоремой 15.1. Думаю, что там описка. Указана величина для отклонения, что действительно соответствует гипотезе Римана.