Основная трудность сейчас начать мыслить категориями множеств.
Это будет приходить постепенно, причем даже в большей степени когда вы перейдете от теории абстрактных множеств к алгебре и анализу/геометрии где будет много примеров конкретных множеств с различными структурами внутри них (например, структурами сложения, умножения, порядка и т.д.). Если под "мыслить категориями множеств" вы понимаете представление множества как "одного объекта" и, наоборот, одного объекта как множества, то это не просто формальность и излишняя абстрактность, а часто практическая необходимость и упрощение.
Например:
- В аксиоматической теории множеств вообще существуют только множества, а натуральные числа, при одном из их определений, строятся как
,
и т.д.
- На натуральные числа можно также смотреть как на множества (точнее "классы", что есть некое обобщение понятия "множества") состоящее из эквивалентных между собой множеств, под эквивалентностью здесь понимается биекция. В этом смысле
означает не просто "число", а класс, элементами которого являются такие множества как
яблок,
автомобилей и все другие подобные множества. Такой класс эквивалентности называется мощностью множества или кардинальным числом (а также и ординальным числом, если мы учитываем отношение порядка среди натуральных чисел). И так смотреть на числа, на самом деле, очень естественно, поскольку арифметику мы потом применяем для ситуаций в которых как раз и встречаются эти
яблок и
автомобилей, т.е.
вполне логично представлять именно как класс эквивалентности ("множество"), а не просто как "число".
- Когда вы будете учить теорию чисел, встретитесь с понятием классов вычетов по данному модулю (числу). Это тоже классы эквивалентности, но по другому отношению эквивалентности (остаток от деления на данное число). И это, соответственно, тоже множества с которыми мы обращаемся как с "числами" в смысле наличия арифметических операций между ними. Внутри множества (кольца) всех классов вычетов есть такие же сложение и умножение как и внутри множества (кольца) всех целых чисел, но с некоторыми особенностями, поскольку кольцо всех классов вычетов по определенному модулю (например, по модулю
) состоит из конечного числа элементов (в данном случае из
). Это все звучит длинно, но суть простая: например по модулю 2 есть всего два класса вычетов: четные числа (множество всех четных чисел) и нечетные (множество всех нечетных чисел). При этом все четные числа можно рассматривать как одно число (
), и все нечетные как одно число (
). Эти два числа образуют кольцо с практически такими же правилами сложения и умножения как будто бы это были обычные
и
, но с единственной и очевидной разницей в том, что
(нечетное число + нечетное число = четное число).
- Множество всех классов вычетов это пример фактормножества. В произвольных группах и кольцах тоже есть фактормножества состоящие из классов эквивалентности, которые являются элементами фактормножества и между которыми можно определить операции типа сложения и умножения согласованные с операциями над изначальными элементами групп и колец.
- Если вводить вещественные числа через сечения Дедекинда, то они будут множествами рациональных чисел удовлетворяющих определенным неравенствам, например
. Между такими множествами можно определить арифметические операции индуцированные (согласованные с) соответствующими операциями между рациональными числами; после чего мы говорим, что научились складывать и умножать вещественные числа. А еще можно вводить вещественные числа как фундаментальные последовательности (т.е. тоже как множества, но другой природы), и на таких множествах тоже можно определить сложение и умножение аналогичные оным на рациональных числах. И после того как мы ввели вещественные числа, мы можем уже забыть из какого множества они "выросли" и оперировать с ними как с "обычными числами", т.е. конкретный способ представления вещественных чисел множествами (сечениями Дедекинда или фундаментальными последовательностями) - не важен.
- Функции/отображения между множествами сами по себе это тоже множества и т.д.
- А над всем этим будет теория категорий. Объектами (элементами) категории могут быть "неразделимые элементы" или "точки", а могут быть множества с богатой внутренней структурой (группы, кольца, топологические пространства и т.д.). В содержательных примерах конкретных категорий случается именно второе, но при этом часто достаточно смотреть на объекты этих категорий как на "точки" в которых эта внутренняя структура роли не играет. Из этого, во многом, и вытекает сила теории категорий: отвлечение от шелухи и излишних деталей внутренней структуры множеств позволяет многое упростить и понять универсальные законы. С изрядной долей упрощения можно сказать, что подход здесь аналогичен тому, как нам неважно, что вещественные числа это сечения Дедекинда или фундаментальные последовательности, но в теории категорий это происходит уже на следующем уровне на лестнице абстракций, после того как сами вещественные числа сформировали множество с определенной структурой (группу, кольцо, топологическое пространство и т.д), но эта структура нам в каких-то ситуациях неважна, поэтому все это множество мы рассматриваем как один элемент/точку. Мы поднимаемся все выше, и сначала дома становятся точками, потом кварталы, а потом города.
- Напоследок совсем простой пример для расслабления :) У вас в кармане может быть
рублей одной бумажкой, а может быть мелочью. В первом случае это "один элемент", во втором случае - "множество". Но когда во втором случае вы покупаете что-то на эту мелочь, вам неважно сколько там монет и какого достоинства каждая из них. Важен только их общий номинал, т.е. достаточно смотреть на
рублей мелочью как на одну бумажку, один элемент. А в каких-то случаях может быть наоборот, вам будут нужны
рублей именно мелочью, а не одной бумажкой. Так что, как видите, вы уже мыслите категориями множеств практически каждый день :)
В сухом остатке, вывод в следующем. Надо постепенно привыкнуть к тому, что на объекты какой-то теории в разных ситуациях можно смотреть по-разному: иногда (когда внутренняя структура важна и играет какую-то роль) представляя их как
множества, а иногда (когда внутренняя структура неважна или в данном случае не играет роли) как
числа/элементы/объекты/точки и т.д., названия для последних могут меняться в зависимости от терминологии данной теории. В этом и есть вся сермяжная правда "мыслить категориями множеств". И если подумать, то эта сермяжная правда очень простая и естественная.