2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 14:15 
Заслуженный участник
Аватара пользователя


09/09/14
6328
kalin в сообщении #1212941 писал(а):
Стремятся аппроксимировать на всей области значений.
Ну а Вы стремитесь работать только в области от 2 до бесконечности. Хотя заявляете, что от 1. При $a=1$ у Вас там деление на 0 ($b$ считаем равным 1), а для промежутка от 1 до 2 Вы не рассматриваете ни одного значения. Не могли бы Вы привести графики сравнения на промежутке $a\in (1;2)$? (А то мне самому больше лень, чем любопытно :)

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 14:33 
Аватара пользователя


26/09/16
198
Снегири
kalin в сообщении #1212941 писал(а):
Упростим все до чисел. Я приводил числовой пример: при a=167 и b=1.2


Всё-таки задача для случая $a = 167, b = 1.2$ отличается от задачи $a = 100, b = 1$ (равно как та - от задачи $a = 1000, b = 1$) менее чем на одну десятитысячную. А вот что будет при малых соотношениях - вопрос хороший (тем более, что задаю его не только я).

Потому что при больших отношениях мы переходим от задачи "аппроксимируем периметр эллипса" к задаче "как можно сильнее приблизить $\pi$ к $4a$". У которой есть куда более простое решение.

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 14:36 
Заслуженный участник


04/03/09
917
grizzly в сообщении #1212942 писал(а):
Не могли бы Вы привести графики сравнения на промежутке $a\in (1;2)$? (А то мне самому больше лень, чем любопытно

Графики, приведенные tolstopuz'ом на предыдущей странице, говорят о том, что в этом диапазоне все формулы настолько точные, что там уже машинная точность сильно влияет. И непонятно, как адекватно оценивать ошибку.

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 14:58 
Аватара пользователя


29/01/17

228
Странный вопрос. В этой зоне все формулы практически одинаково себя ведут. Погрешности практически нулевые. Выполнил расчеты периметра L по всем четырем формулам при a=1.5 и b=1
Они с большой точностью совпали. Потому что Формула Рамануджана очень точна вблизи (1,1):

Изображение

Существенные расхождения начинаются при a/b>7

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 15:07 
Заслуженный участник
Аватара пользователя


16/07/14
9333
Цюрих
kalin в сообщении #1212941 писал(а):
Другие формулы что покажут?
Для таких данных: формула имени g______d: $P = 4a$. Отыгрывает почти половину точности у 2й формулы Рамануджана, и при этом гораздо проще.

Никто не решает задачу "найти формулу поточнее для данного входа" (подумайте, откуда берется "точное значение", с которым вы сравниваетесь? вот примерно оттуда же его возьмет любой человек, которому понадобится конкретная длина). Максимум - решают задачу "найти формулу поточнее в данной области". И тут можно рассматривать разные области.

kalin в сообщении #1212916 писал(а):
Зачем мудрить с какими-то эксцентриситетами? Гляжу на ваши графики и ничего понять невозможно.
Упражнение: выразить $\frac{a}{b}$ через эксцентриситет, и наоборот.

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 15:14 
Аватара пользователя


29/01/17

228
mihaild в сообщении #1212952 писал(а):
Максимум - решают задачу "найти формулу поточнее в данной области".

Все верно. Я говорю об области $1\le \frac ab <\infty $

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 15:33 
Заслуженный участник
Аватара пользователя


16/07/14
9333
Цюрих
kalin в сообщении #1212954 писал(а):
Я говорю об области $1\le \frac ab <\infty $
К этой области тривиально сводится всё. А графики вы эффективно строите (так, что можно что-то разобрать) для $ab > c \approx 5$. Посмотрите на графики tolstopuz, что происходит в окрестности единицы.

На бесконечности, конечно, формулы получающиеся из степенного ряда смотреть бессмысленно - длина в первом порядке линейна, а степенной ряд более чем из двух членов - нет.

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 15:35 
Заслуженный участник


31/12/05
1529
kalin в сообщении #1212941 писал(а):
Я приводил числовой пример: при a=167 и b=1.2 будем иметь значения периметра эллипса L:
Возьмем $a=100,b=55$:
точное значение $497.2629400442381$
Бессель $9$-го порядка $497.26294004423721$
Абед $497.26294003334272$
new $497.26293998979611$
Рамануджан $497.26293998954867$

То есть $9$-й порядок Бесселя дает $14$ верных знаков, Абед - $10$, Рамануджан и ваш метод - $9$. Зато при $a\gg b$ ваш метод не имеет равных. Что важнее - зависит от задачи.

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 15:53 
Заслуженный участник
Аватара пользователя


31/01/14
11439
Hogtown
При $ a \gg b$ вполне разумно построить ряд по степеням $b/a$ который, в отличие от уродца, предлагаемого ТС будет гораздо проще и при наличии достаточного числа знаков будет давать десятки верных знаков

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 16:06 
Аватара пользователя


26/09/16
198
Снегири
kalin в сообщении #1212950 писал(а):
Выполнил расчеты периметра L по всем четырем формулам при a=1.5 и b=1
Они с большой точностью совпали


Перерисуйте в двойном логарифмическом, пожалуйста. Для удобства можете по оси Ox отложить эксцентриситет или, если так интереснее, $a/b-1$.

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 16:21 
Заслуженный участник
Аватара пользователя


16/07/14
9333
Цюрих
Red_Herring в сообщении #1212969 писал(а):
При $ a \gg b$ вполне разумно построить ряд по степеням $b/a$
Это же будет разложение $E$ по степеням $e$ в окрестности $1$? У него там разве нет точки ветвления?

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 16:45 
Заслуженный участник
Аватара пользователя


31/01/14
11439
Hogtown
mihaild в сообщении #1212971 писал(а):
Это же будет разложение $E$ по степеням $e$ в окрестности $1$? У него там разве нет точки ветвления?

Нет, по степеням $b/a$, при $0<b\ll a$, что не совсем то же самое, что $1-e\approx b^2/2a^2$. Просто надо с интегралом поаккуратнее в этой точке.

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 18:22 
Аватара пользователя


29/01/17

228
Red_Herring в сообщении #1212969 писал(а):
в отличие от уродца, предлагаемого ТС

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 18:48 
Заслуженный участник
Аватара пользователя


31/01/14
11439
Hogtown
yeah, right,
Цитата:
beauty is in the eye of the beholder

 Профиль  
                  
 
 Re: Еще одна длина эллипса от kalin
Сообщение28.04.2017, 23:55 


25/08/11

1074
Ну и что прощается здесь одним, совсем иначе для других, к чему здесь уже все привыкли, впрочем.

 !  Lia: post1213078.html#p1213078

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 74 ]  На страницу Пред.  1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group