2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12 ... 19  След.
 
 Re: Летающий волчок
Сообщение15.03.2017, 22:58 
Мало того что очевидно горбик, интересна вообще форма кривой, где равнодействующая вертикальна. Почти очевидно что она уже не зависит ни от массы ни от заряда пробного тела. По крайней мере в боковых ветвях, не на оси, где зависимость очевидным образом есть. Подозреваю получится какая-то вполне известная функция. ;-)

 
 
 
 Re: Летающий волчок
Сообщение15.03.2017, 22:59 
Аватара пользователя
EUgeneUS в сообщении #1200718 писал(а):
Тело тут же воспользуется свободой и убежит.
Чем рассуждать всуе, возмите да сосчитайте. Возьмем заряженное кольцо. По оси $z$ (вдоль поля) потенциал на оси кольца $\varphi=\frac{q}{\sqrt{R^2+z^2}}-gz$ при некоторых соотношениях $q$ и $g$ имеет замечательный минимум. например, вот такой:
Вложение:
ring.gif
. Поперек кольца потенциал самого кольца имеет минимум на оси кольца (предлагаю проделать это вычисление в качестве упражнения - я проделал). Таким образом, у заряда есть устойчивое положение равновесия над центром кольца, но не при всяком соотношении зарядов и масс.


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Летающий волчок
Сообщение15.03.2017, 23:01 
Аватара пользователя
amon в сообщении #1200774 писал(а):
Поперек кольца потенциал самого кольца имеет минимум на оси кольца (предлагаю проделать это вычисление в качестве упражнения - я проделал). Таким образом, у заряда есть устойчивое положение равновесия над центром кольца, но не при всяком соотношении зарядов и масс.

YES!!! :D

 
 
 
 Re: Летающий волчок
Сообщение15.03.2017, 23:02 
Есть картинки с тремя зарядами, там не силовые линии , а уровни поля. Что-то не вставляется.
Есть уровень , граница которого выпуклая , есть с вогнутой границей, а есть с дыркой между зарядами.
Какой уровень выберем, то и получим.

 
 
 
 Re: Летающий волчок
Сообщение15.03.2017, 23:27 
Аватара пользователя
Так, что-то я попкорном не запасся. А тут уже тяжёлая артиллерия в ход пошла!

 
 
 
 Re: Летающий волчок
Сообщение15.03.2017, 23:33 
Аватара пользователя
amon в сообщении #1200774 писал(а):
Поперек кольца потенциал самого кольца имеет минимум на оси кольца (предлагаю проделать это вычисление в качестве упражнения - я проделал).


Если это у Вас получилось для любого $z$, то Вы это проделали неверно. Очевидно, что для достаточно больших $z$ потенциал не будет иметь минимума "поперек" кольца на оси кольца. Потому что для больших $z$ у нас брюки превращаются в шорты кольцо превращается в точечный заряд. Более того, потенциал не может иметь минимума "поперек кольца" в точке, где он имеет минимум вдоль $z$. И мне это не надо считать, за меня Лаплас посчитал.

 
 
 
 Re: Летающий волчок
Сообщение15.03.2017, 23:45 
Хм, кажется мне пора посыпать голову пеплом: прикинул формулами угол результирующей силы от двух зарядов, выходит результирующая во всей плоскости направлена наружу от центра соединяющего заряды отрезка. Т.е. равновесие по горизонтали везде неустойчивое. Вне зависимости от массы и заряда пробного тела. Вах. :facepalm: А золотой ключик был казалось так близко ... Всё же интуиция слишком часто подводит, таки надо считать. :-(

 
 
 
 Re: Летающий волчок
Сообщение15.03.2017, 23:52 
Аватара пользователя
Dmitriy40
А покажите, как считали...

 
 
 
 Re: Летающий волчок
Сообщение16.03.2017, 00:02 
Аватара пользователя
EUgeneUS в сообщении #1200791 писал(а):
Более того, потенциал не может иметь минимума "поперек кольца" в точке, где он имеет минимум вдоль $z$. И мне это не надо считать, за меня Лаплас посчитал.
Лаплас и его приспешники сосчитали это для случая, когда уравнение одно, а у нас - два, и гравитационный заряд не равен электрическому для одной и той же частицы. Такой случай великими теоремами не предусмотрен. Если бы рассматривалась задаче о частице над кольцом в поле плоского конденсатора, то никакого минимума не было бы, поскольку потенциал $\varphi=\frac{1}{\sqrt{R^2+z^2}}- z$ минимума не имеет.

 
 
 
 Re: Летающий волчок
Сообщение16.03.2017, 00:03 
Аватара пользователя
Dmitriy40 в сообщении #1200796 писал(а):
Т.е. равновесие по горизонтали везде неустойчивое. Вне зависимости от массы и заряда пробного тела. Вах. :facepalm:


И опять Вас подвела интуиция. В двумерном случае (все заряды в одной плоскости, пробный тоже двигается только в ней), если равновесие достигается, то два варианта
1. По одной оси оно устойчивое, по другой - неустойчивое.
2. Равновесие безразличное.

Для нашего случая (два одинаковых заряда на горизонтальной оси и равномерное поле тяжести) при достаточно малых $z$ равновесие по горизонтали устойчивое, если все происходит в вертикальной плоскости, проходящей через заряды.

-- 16.03.2017, 00:04 --

amon в сообщении #1200801 писал(а):
Если бы рассматривалась задаче о частице над кольцом в поле плоского конденсатора, то никакого минимума не было бы,


Для любого заряда на конденсаторе?

 
 
 
 Re: Летающий волчок
Сообщение16.03.2017, 00:17 
Аватара пользователя
Цитата:
Поперек кольца потенциал самого кольца имеет минимум на оси кольца (предлагаю проделать это вычисление в качестве упражнения - я проделал). Таким образом, у заряда есть устойчивое положение равновесия над центром кольца, но не при всяком соотношении зарядов и масс.


Позвольте усомниться в этом.
Наш потенциал прекрасно удовлетворяет трехмерному лапласу, потому как гравитацию можно заменить однородным электростатическим поле.
А значит для него справедливо утверждение, что потенциал внутри сферы равен усредненному потенциалу на сфере любого радиуса вокруг него.
Возмем очень маленькую сферу. Вы утверждаете, что если мы будем двигаться из точки равновесия в любом направлении, потенциал возрастает. Но тогда он в любой окрестности нашей точки больше, чем в самой точке.
Противоречие-с. И без всяких расчетов.
То есть если есть пути, по которым потенциал возрастает, должны быть пути, по которым он убывает. Это классика.

 
 
 
 Re: Летающий волчок
Сообщение16.03.2017, 00:18 
Аватара пользователя
EUgeneUS в сообщении #1200802 писал(а):
Для нашего случая (два одинаковых заряда на горизонтальной оси и равномерное поле тяжести) при достаточно малых $z$ равновесие по горизонтали устойчивое, если все происходит в вертикальной плоскости, проходящей через заряды.
То есть, в вертикальной плоскости, проходящей через все три точки, между двумя горизонтальными зарядами всё-таки есть локальная ямка, и Вы были неправы?
Я правильно понял?

-- Ср мар 15, 2017 15:29:40 --

fred1996 в сообщении #1200807 писал(а):
Наш потенциал прекрасно удовлетворяет трехмерному лапласу, потому как гравитацию можно заменить однородным электростатическим поле. А значит для него справедливо утверждение, что потенциал внутри сферы равен усредненному потенциалу на сфере любого радиуса вокруг него. Возмем очень маленькую сферу. Вы утверждаете, что если мы будем двигаться из точки равновесия в любом направлении, потенциал возрастает. Но тогда он в любой окрестности нашей точки больше, чем в самой точке.
Противоречие-с. И без всяких расчетов.
Но тогда по тем же самым соображениям над кольцом не может быть и потенциальной "горки", верно?

 
 
 
 Re: Летающий волчок
Сообщение16.03.2017, 00:36 
Аватара пользователя
fred1996 в сообщении #1200807 писал(а):
Наш потенциал прекрасно удовлетворяет трехмерному лапласу, потому как гравитацию можно заменить однородным электростатическим поле. А значит для него справедливо утверждение, что потенциал внутри сферы равен усредненному потенциалу на сфере любого радиуса вокруг него. Возмем очень маленькую сферу. Вы утверждаете, что если мы будем двигаться из точки равновесия в любом направлении, потенциал возрастает. Но тогда он в любой окрестности нашей точки больше, чем в самой точке.
Противоречие-с. И без всяких расчетов.

Цитата:
Но тогда по тем же самым соображениям над кольцом не может быть и потенциальной "горки", верно?


Верно. Типичное седло.
Просто для кольца и для двух точечных зарядов оно выглядит по-разному.

 
 
 
 Re: Летающий волчок
Сообщение16.03.2017, 00:44 
Аватара пользователя
fred1996 в сообщении #1200815 писал(а):
Верно. Типичное седло.
Просто для кольца и для двух точечных зарядов оно выглядит по-разному.

Любопытно посмотреть, как выглядит это "седло" для центрально-симметрического кольца.

Для нескольких зарядов по кругу
fred1996 в сообщении #1200758 писал(а):
То есть там уже не просто седловина, а такая ромашковая седловина.
видимо, нечто вроде такого?

 
 
 
 Re: Летающий волчок
Сообщение16.03.2017, 00:57 
Аватара пользователя
Dan B-Yallay в сообщении #1200808 писал(а):
То есть, в вертикальной плоскости, проходящей через все три точки, между двумя горизонтальными зарядами всё-таки есть локальная ямка, и Вы были неправы
?
Я правильно понял?


Не неправильно. Есть участок, где устойчиво по вертикали и неустойчиво по горизонтали (это назвал "горбик", так пробный заряд скатывается вбок); и есть участок, где устойчиво по горизонтали и не устойчиво по вертикали (это назвал "ямка без дна", так как пробник вываливается вниз). И есть точка, где равновесие будет формально безразличным, но так как она одна - все равно вывалится.

 
 
 [ Сообщений: 283 ]  На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12 ... 19  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group