задача:
Есть прямоугольник со сторонами a и b (а строк, b столбцов, а
b), в одной из его клеток стоит король.
За один ход можно стрельнуть ровно в 1 клетку прямоугольника. Если король может добраться кратчайшим путем за нечетное количество ходов до клетки выстрела (он ходит как шахматный король), то он поднимается на 1 клетку вверх (если не может, то идет на 1 направо), иначе идет вниз на 1(если не может, то влево на 1). За какое минимальное количество выстрелов в него гарантированно можно попасть?
Пытался сделать - не получилось, существенных продвижений нет.