Уравнение поверхности вращения

действительно верное. Я только не понял вашего обоснования.
Подробнее: любая точка на одной и той же линии уровня этой функции будет давать одинаковое значение

, так что чтобы добиться его максимально рассредоточенным распределением вещества, надо равномерно заполнить всю эту линию уровня. Но дано вещество только с объёмной плотностью, а не с линейной, так что надо скомбинировать какую-то кучу линий уровня, чтобы полученное множество имело ненулевой объём. У нас получается набор всевозможных распределений вещества, среди которых остаётся выбрать то, в которое входят линии наибольшего уровня, и это значит, что надо набрать их от какого-то конечного

до

(достигающегося в

). Получающаяся область ограничена линией уровня именно

.
Тут куча всего, конечно, вопит о математической строгости, но раз раздел физический…
