Арцел - равномерная ограниченность и равномерная непрерывность.
Нет, там не равномерная непрерывность. Там другое слово. Посмотрите в учебнике.
Производная существует и ограничена по модулю константой, значит есть равномерная непрерывность.
Любая функция, непрерывная на отрезке является равномерно непрерывной на этом отрезке. Производные тут вообще ни при чём.
А вот ограниченность тут без единицы и только сверху
Непонятное высказывание. Всякая функция, непрерывная на отрезке, является ограниченной на нём.
Но Вам ведь не ограниченность нужна, а равномерная ограниченность, и не функции, а семейства функций, которое у Вас обозначено буквой
.
вот и интересуюсь как её доказывать.
Ну, видимо, как-то из заданного условия на производную…
Ой! А Вы условие правильно списали? Если всего лишь
, то никакой предкомпактности не будет, поскольку никакой равномерной ограниченности нет.