И Вы пишете изменение энтропии

. По рассчету не понятно, между чем и чем изменение. Мне нужна максимальная определенность в понятиях, иначе не пойму (я и так ничего не понимаю).
Вы просто не туда думаете!
На самом деле всё гораздо проще и ваши формулы с перестановками здесь ни при делах.
Возьмите сначала Ваш рисунок из первого сообщения, там где слева три белых молекулы, справа три черных молекулы, между ними - перегородка.
Теперь нарисуйте ровно то же самое: слева три белых молекулы, справа - три черных молекулы, и между ними нет перегородки.
Вот между этими двумя состояниями, как раз, изменение энтропии составляет

на каждую молекулу.
Чтобы убедиться в этом, занумеруйте слева направо от

до

позиции, которые занимают молекулы на Вашем рисунке, а не сами молекулы. Поскольку энергии молекул равны - нахождение одной из молекул в одной из этих ячеек как раз и будет ее микросостоянием.
Теперь самую левую молекулу в ячейке закрасьте чёрным, пусть это будет "меченая" молекула. Остальные пять будут белые, для этого опыта.
Пока есть перегородка, черная молекула может находиться в одном из трех микросостояний:

или

.
Обозначим количество возможных микросостояний для данной молекулы

.
Теперь уберем перегородку.
Черная молекула по прежнему в первой ячейке.
Но количество возможных ее микросостояний увеличилось до

, энтропия в расчёте на одну молекулу увеличилась на

.
Заметьте, Фейнман ничего не говорит от максимальной возможной энтропии для данной системы. Речь идет только об энтропии на одну молекулу. И речь идет только о самом моменте убирания перегородки.
Молекулы остались в тех же микросостояниях, а энтропия увеличилась на

для каждой молекулы...
(Оффтоп)
Никогда не думал, что придется "отвечать за базар Фейнмана"
