2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: О соотношении математики и CS
Сообщение24.01.2017, 14:23 
Заслуженный участник
Аватара пользователя


21/12/05
5932
Новосибирск

(Оффтоп)

Someone в сообщении #1186953 писал(а):
Но формального определения того, что относится к математике, а что — нет, не существует.

Математика - это то, чем занимаются математики. (с) ак. Ю.Л. Ершов, не помню в каком мохнатом году, на КВНе.

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение02.02.2017, 17:19 


22/12/11
87
Someone в сообщении #1186841 писал(а):
Я — профессиональный математик


(Оффтоп)

Откуда у "профессионального" математика столько времени, чтоб сидеть на весьма низкокачественном форуме (по сравнению с тем же MO). И какой у вас h-индекс, если не секрет? Интересно, с какого начинается "профессионал"

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение02.02.2017, 20:11 


20/03/14
12041
 !  amarsianin
Предупреждение за хамство. post1189315.html#p1189315

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 03:49 


11/08/16

312
Someone в сообщении #1186794 писал(а):
knizhnik в сообщении #1186556 писал(а):
если вы берете функции разной арности, то при естественном сложении арность результата будет максимумом из двух арностей
Это какая-то ерунда. При корректном определении должно быть совсем не так. Кроме того, мы всегда можем считать, что "арность" одинаковая, просто введя "фиктивные" аргументы.
Мне, кстати, следовало сразу поинтересоваться, какое определение считается у вас корректным. Арности - это натуральные числа. Их можно пытаться как-то по собственному усмотрению складывать, но обратное действие (вычитание) скорее всего будет не определено.

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 07:28 
Заслуженный участник


27/04/09
28128
Вообще этот тёмный разговор об операциях над функциями разной арности тёмный. Зачем он был начат? Нет никакого естественного способа обобщить операцию $+\colon A\times A\to A$ до $+'\colon(B^m\to A)\times(B^n\to A)\to(B^k\to A)$, если $m\ne n$. Разве что $k=m+n$ и $(f +' g)(a,b) = f(a)+g(b)$, но от покомпонентного применения $+$ это так далеко, как возможно.

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 08:18 


11/08/16

312
arseniiv в сообщении #1189405 писал(а):
Вообще этот тёмный разговор об операциях над функциями разной арности тёмный. Зачем он был начат?
Скорее, стоит спросить, зачем он был продолжен. Я хочу поинтересоваться, какое определение Someone считает корректным, и почему у меня некорректное.

А вообще тут разбираются алгебраические свойства некой структуры функций над двухэлементным полем. А алгебраические свойства - это и есть математическое содержание. Просто функция вне структуры - это комбинаторный объект, который никакой ценности не представляет. И на метауровне: зачем все это нужно, кому и где пригождается. Вот.

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 08:26 
Заслуженный участник


27/04/09
28128

(Оффтоп)

knizhnik в сообщении #1189411 писал(а):
А вообще тут разбираются алгебраические свойства некой структуры функций над двухэлементным полем.
Да, и поначалу все функции в этой некой структуре были одинаковоместные, кажется. Потом кто-то ни с того ни с сего сделал их разноместными.

knizhnik в сообщении #1189411 писал(а):
Просто функция вне структуры - это комбинаторный объект, который никакой ценности не представляет.
(Это всё равно что ничего не сказать. Можно было бы писать конкретнее, если вам интересно, чтобы вашу мысль восприняли.)

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 12:51 
Заслуженный участник
Аватара пользователя


23/07/05
17988
Москва
knizhnik в сообщении #1189411 писал(а):
Я хочу поинтересоваться, какое определение Someone считает корректным
Никакое. При корректном определении Вы должны фиксировать список аргументов, одинаковый для всех функций.

knizhnik в сообщении #1189411 писал(а):
Скорее, стоит спросить, зачем он был продолжен.
Зачем он был начат?

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 13:43 


11/08/16

312
Someone, а как вы понимаете предикат $x \mid 2 \wedge y \mid x$ на множестве $\mathbb{Z}$? Я бы назвал это двухместным предикатом делимости четных чисел. То есть для нечетных и/или неделимых чисел получается ложное значение, а для остальных пар - истинное. Но мне нужен именно ваш ответ.

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 14:19 


03/06/12
2874

(Оффтоп)

amarsianin в сообщении #1189315 писал(а):
(по сравнению с тем же MO

А это где? Я гуглом поискал, одни школы нашел.

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 14:21 
Заслуженный участник
Аватара пользователя


06/10/08
6422

(Sinoid)

Sinoid в сообщении #1189478 писал(а):
А это где? Я гуглом поискал, одни школы нашел.

https://mathoverflow.net

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 18:14 


03/06/12
2874

(Оффтоп)

Xaositect в сообщении #1189479 писал(а):
Sinoid в сообщении #1189478

писал(а):
А это где? Я гуглом поискал, одни школы нашел. https://mathoverflow.net

Чем там лучше? Язык англицкий. К примеру, я там смогу общаться года через два, это при условии, что я сейчас математику раза в два заторможу. К тому же отображается не полноценно.

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 19:34 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
Sinoid в сообщении #1189529 писал(а):
Чем там лучше? Язык англицкий.

В том то и весь фокус: шире круг тех, кто может ответить.

Но dxdy имеет другое преимущество: общенаучность.

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение03.02.2017, 20:53 
Заслуженный участник
Аватара пользователя


23/07/05
17988
Москва
knizhnik в сообщении #1189474 писал(а):
Someone, а как вы понимаете предикат $x \mid 2 \wedge y \mid x$ на множестве $\mathbb{Z}$? Я бы назвал это двухместным предикатом делимости четных чисел. То есть для нечетных и/или неделимых чисел получается ложное значение, а для остальных пар - истинное. Но мне нужен именно ваш ответ.
Собственно, здесь имеется операция над значениями предикатов.

Для того, чтобы получить операцию над функциями, нужно, чтобы они имели общую область определения.

Для этого составим множество $\mathscr V$ всех переменных в данной теории (его мощность не превышает $\max\{\lvert A\rvert,\aleph_0\}$, где $A$ — алфавит теории), и пусть $X$ — множество всех объектов теории (оно зависит от интерпретации). Тогда в качестве общей области определения можно взять множество $X^{\mathscr V}$ — множество всех отображений множества переменных $\mathscr V$ в множество объектов $X$.

Далее, нас интересуют только функции, зависящие от конечного числа переменных. Для такой функции мы можем явно указывать список переменных, от которых она зависит (что-нибудь типа $f(x,y,z)$), но при этом помнить, что все остальные переменные тоже есть, только они не упоминаются в списке, потому что функция от них не зависит (но указывать в списке такие "фиктивные" переменные не запрещено, лишь бы весь список был конечным; в таком случае список аргументов функции оказывается не фиксированным). Не нужно забывать, что разные функции будут зависеть от разных наборов переменных. Также переменные различаются по именам, а не по их месту в списке, так что $f(x,y)$ и $f(y,x)$ — одна и та же функция, а $f(x,y)$ и $f(x,z)$ — разные. Здесь мы можем написать $h(x,y,z)=f(y,x)+f(x,z)$, но, очевидно, ваше утверждение
knizhnik в сообщении #1186556 писал(а):
Но если вы берете функции разной арности, то при естественном сложении арность результата будет максимумом из двух арностей.
об арностях при таких обозначениях выполняться не будет. Но, вообще-то, при описанном подходе арность всех функций равна $\lvert\mathscr V\rvert$.

В случае, когда $\lvert\mathscr V\rvert\leqslant\aleph_0$, возможен другой вариант. В этом случае возможно упорядочить множество всех переменных в виде конечной или бесконечной последовательности $x_1,x_2,x_3,\ldots$. Если в списке переменных функции указывать все переменные от $x_1$ до $x_n$, где $n$ — наибольший номер переменной, от которой функция зависит, или любое большее число, то в каком-то (как говорил П. С. Александров, "пиквикском") смысле ваше утверждение об арностях выполняется. Но не надо забывать, что на самом деле здесь арности равны $\lvert\mathscr V\rvert$.

P.S. Разумеется, определение одних функций с помощью других функций с разными списками аргументов — это самое обычное дело. Но никто не называет такие определения операциями. Это именно то, что происходит в вашем предикате.

P.P.S. Запись "$a\mid b$" означает, что "$a$ делит $b$" (или "$b$ делится на $a$"). Написанный Вами предикат имеет значение "истинно" для следующих пар $(x,y)$: $(1,1)$, $(2,1)$, $(2,2)$, в остальных случаях он имеет значение "ложно".

 Профиль  
                  
 
 Re: О соотношении математики и CS
Сообщение04.02.2017, 00:23 


11/08/16

312
Someone в сообщении #1189571 писал(а):
Запись "$a\mid b$" означает, что "$a$ делит $b$" (или "$b$ делится на $a$"). Написанный Вами предикат имеет значение "истинно" для следующих пар $(x,y)$: $(1,1)$, $(2,1)$, $(2,2)$, в остальных случаях он имеет значение "ложно".
Да, я понял. Надо было записать в другом порядке.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 46 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group