я не совсем уверен, что это будет ответом на ваш вопрос, но я когда-то сам заметил, что знаменатели чисел H(n) и H'(n) одновременно не делятся на порядковый номер n при n = {77, 847, 9317}, то есть n = {7*11, 7*11^2, 7*11^3}.
я сформулировал, как мне тогда показалось вполне правдоподобное предположение, что таким свойством обладают все гармонические числа с номерами, принадлежащими бесконечной геометрической прогрессии n = 7*11^k и только они
через какое-то время частично моё предположение было подтверждено, но и были найдены другие прогрессии с такими же свойствами
скетч доказательства, сделанный Максом Алексеевым, есть в комментариях по ссылке A125581, приведённой выше
может у вас получится как-то элегантно доказать то же самое и для других простых p
Макс с Таней Ховановой нашли ещё несколько таких простых чисел, два из которых оказались хорошо известными {1093, 3511}, а ещё два оказались совершенно новыми {5557, 104891}
http://www.research.att.com/~njas/sequences/A126197
увидев вашу задачку, я подумал, что найденные нами геометрические последовательности индексов гармонических чисел H(n) и H'(n) годятся в качестве возможных решений вашей задачки
конечно же могут быть и другие решения, ведь вас здесь не интересует неделимость знаменателей знакопеременных гармонических чисел H'(n), а меня как раз интересовала одновременная неделимость знаменателей H(n) и H'(n) на их индекс
поэтому я сам и предложил когда-то последовательность A125581 в OEIS
меня, кстати, интересовали и подобные последовательности для обобщённых гармонических чисел
там тоже, как оказалось, вылазят геометрические прогрессии с интересными простыми числами
самое интересное вроде получается в третьем порядке с кубами в знаменателе H(n,3) и H'(n,3)
http://www.research.att.com/~njas/sequences/A128673
доказательств я не видел, но просто обнаружил эти странные геометрические прогрессии неделящихся на собственные индексы обобщённых гармонических знаменателей
вот тут есть кое-какая прошлогодняя эмпирика, годящаяся для размышлений и доказательств
http://www.research.att.com/~njas/seque ... &go=Search
примерно вот так
пардон, если получился off-topic и мои наблюдения не совсем в тему вашей задачки