Можно переписать уравнение "окружности" и поместить ее в любую точку и испльзовать безразмерные переменные

Где

и

Потом написать уравнения для адиабат, касательных к этой окружности.
А потом переписять эти уравнения в более удобных полярнах координатах.
Получим чисто тригонометрические уравнения для одной угловой переменной.
При некоторых соотношениях

уравнения могут принять решабельный вид.
Эта задачка наглядно демонстрирует, как считать КПД произвольных циклов с произвольной функциональной зависимостью давления и объема.