К сожалению, представление о выводе не дает.
Я понимаю, что убеждать Вас в этом бесполезно, однако даёт.
Школьная геометрия - это курс, в котором вывести полноценно нельзя почти ничего. Каждое школьное доказательство использует неписанные правила, неписанные аксиомы, массу разных вспомогательных построений, определений, оборотов языка.
Это верно, но суть в том, что школьники этого не замечают. Для них всё нормально.
В истории развития математики было совсем не так, что вначале люди совсем не знали никакой логики, а потом сразу прыгнули к современным представлениям о математической строгости. Понадобилась долгая эволюция представлений о том, что можно считать строгим доказательством, что нельзя.
Точно так же и школьников нельзя учить сразу на современном уровне строгости.
В результате мы получим что-то вроде богословия, когда мы можем только постулировать некие догмы, но не проверять их и не обосновывать. И естественно, все эти догмы, эти подпорки подгоняются под желаемое "доказательство".
Вы очень утрируете. Уровень строгости школьной геометрии далёк от современного, но этот уровень
существует и не позволяет доказывать вообще что угодно. То есть, можно представить себе случай, когда рассуждения, проведённые на школьном уровне строгости ("на пятёрку"), ведут к абсурду (даже знаю такие примеры). Но этот уровень строгости с достаточной чёткостью разграничивает рассуждения на удовлетворяющие и не удовлетворяющие ему.
Возможно, Вам сложно спуститься с небес высокой математики на землю математики школьной, и поэтому сложно увидеть в ней и обоснования, достаточно убедительные для школьников, и отсутствие заметных (опять же, заметных для школьников) "подгонок под доказательство".
Если б вы захотели привести в порядок аксиоматику
то получили бы учебник, по которому невозможно школьника чему-то научить.