Так может быть подойдет просто набор тригонометрических функций:
. Ортогональность здесь есть, 1 входит в набор.
Верно, подойдет. Но для полного счастья хотелось бы еще и третье условие -
. Т.е. когда два младших базис-вектора фиксированы, а все остальные свободны. Я это условие в самом начале обговорил, но в предыдущем объяснении упоминать его не стал, чтобы более выпукло продемонстрировать проблему, порождаемую весовой функцией. Т.к. для базис-вектора
она очевидна, а для
уже не очень.
Что касается гармонического ряда (испытывал как базис преобразования Фурье, так и базис косинусного преобразования), то аппроксимация ими линейного тренда
выглядит ужасно - в ней участвует весь базис без остатка, а хотелось бы экономного варианта, когда такая простая функция аппроксимируется парой базисных векторов.
-- Сб янв 07, 2017 22:18:31 --Тогда остаётся Грамм-Шмидт с двумя фиксированными Вами функциями и далее практически произвольный набор, хоть полиномы, хоть нет. Эти наборы устраивают, или тоже нет?
Да, именно этого я и хотел - два базис-вектора фиксированы (с самого начала ортогональны), а третий (на большее я сейчас замахиваться боюсь, чтобы не сглазить) - что-нибудь экзотическое, желательно смахивающее на гауссиану (в центре толще, чем на краях).
Однако вот в чем беда - если я добавлю к двум моим заданным базис-векторам третий (хотя бы ту же гауссиану), а затем применю ортогонализацию по Грамму-Шмидту, то ортогональный базис я получаю, но той ценой, что оба моих базис-вектора разрушаются (приобретают другую форму). А как применить Грамма-Шмидта так, чтобы младшую пару векторов (которую я решил зафиксировать) он не трогал, я не знаю как. Тем более что третий вектор, взятый наобум, сильно коррелирует с первой парой векторов. А если эту корреляцию обрезать (куда же ее еще девать, если эта пара зафиксирована?), то третий вектор превратится в ... третий вектор Лежандра!
-- Сб янв 07, 2017 22:29:54 --Вместо
и
читайте
и
: это многочлены Лежандра
(обычные) нормированные на единицу.
Вы можете сделать, например, так:
,
,
,
,
при
. Хвост можно портить дальше.
Спасибо, вашу идею понял. В самом деле, можно совершать повороты на любой угол в любых плоскостях, перпендикулярных плоскости, образуемой парой векторов
. Эта операция, кажется, носит название "плоское вращение Гивенса". В матричной алгебре это парная операция между парой столбцов. И если столбцы, принадлежащие двум младшим базис-векторам, не трогать, то они действительно сохранятся, тогда как старшие базис-вектора "поплывут". Ортогональность системы при этой операции сохраняется.