Ого! Пока я тут в поте лица корпела над лекциями, много чего написали! Спасибо!
А вот зачем это может понадобится учителям -- не скажу, даже под пытками. Т.к. не знаю.
Ну.. это курсы по олимпиадным задачам. Видимо, потом эти учителя у себя будут кружки вести. Темы выбираем мы (лекторы) сами... А мне не нравится просто задачки решать... это же море разливанное... утонуть можно. Хотелось туда всунуть чего-нибудь теоретическое. А так как мне нравятся группы -- вот на них и ориентируюсь.
Поговорю о целочисленных задачах с выходом на алгебру остатков и всякое малое Ферма. Поговорю о решении геометрических задач с помощью движений.
Ну, а потом -- хлоп: а тут есть общие идеи. Но, конечно, если увижу что им это не надо -- сильно углубляться не буду.
Не понял, существование обратного к изометрическому преобразованию, очевидно что ли?
Вот и я о том же! В смысле, обратное-то есть. Но из образа плоскости. Но кто сказал, что образ -- не какой-нибудь круг? Или прямая? Нет, очевидно, что не так. Ну, а как доказать? Пока решила сослаться на метод координат...
-- 09.01.2017, 19:20 --Может, сначала рассказать учителям о программе Клейна соответствия геометрий и групп преобразований, а потом сообщить им, что движения - это как раз группа преобразований, отвечающая Евклидовой геометрии, которую они преподают школьникам?
Да, это обязательно! Я, впрочем, в прошлый раз (осенью) рассказывала им про аффинную геомтерию, примерно в таком же ключе (через преобразования и инварианты) Но напомнить не помешает!
-- 09.01.2017, 19:22 -- например, можно сначала доказать про разложение движения в композицию отражений,
Я долго мучилась, переставляла материал и так и сяк. Эту теорему я доказываю, но все-таки в конце. И надо ещё внимательно посмотреть, не опирается ли доказательство само на факт сюръективности. Ну... наверное, нет.