2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Репдижиты, на единицу большие квадратов
Сообщение08.12.2016, 16:13 
Аватара пользователя


01/12/11

8634
В десятичной системе счисления существуют только три репдижита, каждый из которых превышает квадрат целого числа на 1.
Это репдижиты: 1, 2 и 5 (в своё время В. Сендеров предложил эту задачу на турнире им. А. П. Савина).
Как некоторым из вас уже удалось заметить, все три вышеуказанных репдижита однозначны.

В другой позиционной системе счисления, скажем, в четверичной, можно найти двузначный репдижит, на единицу больший квадрата целого числа. Например, квадрат двойки, увеличенный на 1, записывается в четверичной системе следующим образом: 11.

Было бы, на мой взгляд, крайне любопытно заняться поиском более длинных подобных репдижитов в различных позиционных системах счисления.
А может, более длинных попросту не существует?
А если существуют, могут ли они быть сколь угодно длинными?

 Профиль  
                  
 
 Re: Репдижиты, на единицу большие квадратов
Сообщение08.12.2016, 16:41 


05/08/08
55
Санкт-Петербург
$$5^2+1=26=222_3$$

$$29^2+1=842=222_{20}$$

ну и дальше - уравнение Пелля.

Другая серия начинается с $$28^2+1=785=555_{12}$$.
И мне кажется, что трехзначное решение будет для любой цифры, равной сумме двух квадратов.

 Профиль  
                  
 
 Re: Репдижиты, на единицу большие квадратов
Сообщение08.12.2016, 16:53 
Аватара пользователя


01/12/11

8634
kknop
Большое спасибо!
А четырёх- и более значные бывают?

 Профиль  
                  
 
 Re: Репдижиты, на единицу большие квадратов
Сообщение08.12.2016, 17:16 
Заслуженный участник


04/03/09
919
Парочка четырехзначных примеров:
$2222_{4}=13^2+1$
$5555_{60}=1048^2+1$

 Профиль  
                  
 
 Re: Репдижиты, на единицу большие квадратов
Сообщение08.12.2016, 20:26 
Заслуженный участник
Аватара пользователя


13/08/08
14496
Если без теории, то удобнее переписать уравнение так:
$\dfrac{m\cdot(k^l-1)}{k-1}=(n^2+1)$,
где $k$-основание системы, $l$ - количество повторений цифры $m<k$, $n$- натуральное число.
Сразу можно увидеть редджипы типа $AAAAAAAAAA_{11}=161051^2+1$
++ Ой, перепутал плюс и минус. Yadryara установил, что $AAAAAAAAAA_{11}=161051^2-1$ :oops:

 Профиль  
                  
 
 Re: Репдижиты, на единицу большие квадратов
Сообщение08.12.2016, 21:54 
Аватара пользователя


29/04/13
8961
Богородский
Чуток ошиблись: https://www.wolframalpha.com/input/?i=AAAAAAAAAA_11-161051%5E2

$AAAAAAAAAA_{11}=161051^2-1$

 Профиль  
                  
 
 Re: Репдижиты, на единицу большие квадратов
Сообщение10.12.2016, 16:03 


05/08/08
55
Санкт-Петербург
Ага, то бишь k=m+1 при четном l сразу даёт решение для любого основания системы счисления. Ой, для неправильного уравнения

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: nimepe


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group