2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.
 
 Линейное пространство
Сообщение24.10.2016, 23:03 
Аватара пользователя


26/03/13
326
Russia
Образуют ли линейное пространство матрицы, перестановочные с данной: $A=\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, если да, то укажите размерность этого пространства и его базис

Пусть $B=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$AB=BA$

после решения системы уравнений:

$B=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$

Линейное пространство - это множество, назовём S, для которого выполняются следующие условия

1) S не пустое

2) $\forall x,y,z \in S$

Коммутативность сложения: $x+y=y+x$

Ассоциативность сложения: $x+(y+z)=(x+y)+z$

Есть нулевой элемент: $x+0=0+x=x$

Есть обратный элемент: $\forall x \in S \Rightarrow \exists y \in S : x+y=y+x=0$

3) Пусть $\alpha, \beta \in \mathbb{R}$, тогда:

$\alpha (\beta x)=(\alpha \beta) x$

$(\alpha + \beta)x=\alpha x + \beta x$

$\alpha(x+y)=\alpha x + \alpha y$

$1 \cdot x = x \cdot 1 = x$

Очевидно м-цы заданные B образуют линейное пространство

базис этого пространства: $B_1=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ , $B_2=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

таким образом его размерность 2

верно?

 Профиль  
                  
 
 Re: Линейное пространство
Сообщение24.10.2016, 23:07 


20/03/14
12041
 !  Joe Black
Замечание за дублирование темы из Карантина. Исправляйте основную тему. Эта будет удалена.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: confabulez, Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group