2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.
 
 Линейное пространство
Сообщение24.10.2016, 23:03 
Аватара пользователя


26/03/13
326
Russia
Образуют ли линейное пространство матрицы, перестановочные с данной: $A=\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, если да, то укажите размерность этого пространства и его базис

Пусть $B=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$AB=BA$

после решения системы уравнений:

$B=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$

Линейное пространство - это множество, назовём S, для которого выполняются следующие условия

1) S не пустое

2) $\forall x,y,z \in S$

Коммутативность сложения: $x+y=y+x$

Ассоциативность сложения: $x+(y+z)=(x+y)+z$

Есть нулевой элемент: $x+0=0+x=x$

Есть обратный элемент: $\forall x \in S \Rightarrow \exists y \in S : x+y=y+x=0$

3) Пусть $\alpha, \beta \in \mathbb{R}$, тогда:

$\alpha (\beta x)=(\alpha \beta) x$

$(\alpha + \beta)x=\alpha x + \beta x$

$\alpha(x+y)=\alpha x + \alpha y$

$1 \cdot x = x \cdot 1 = x$

Очевидно м-цы заданные B образуют линейное пространство

базис этого пространства: $B_1=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ , $B_2=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

таким образом его размерность 2

верно?

 Профиль  
                  
 
 Re: Линейное пространство
Сообщение24.10.2016, 23:07 


20/03/14
12041
 !  Joe Black
Замечание за дублирование темы из Карантина. Исправляйте основную тему. Эта будет удалена.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group