Для таких увлекательных игр нужно иметь соответствующие пакеты. Ну или хотя бы базу простяшек с возможностью программировать там. А вручную смотреть в таблицу и автоматизировать только получение следующей тройки тоскливо. Можно, конечно, накарябать и в эксельке, но увлечёшься этими магическими числами и на ВТФ потянет.
Впрочем, меня поразило, что при небольших ограничениях в тройках почти три четверти простых. Кстати, интересные инварианты: основной по модулю

:

.
И по последней цифре:

. Другие дают пятёрку рано или поздно. То есть можно теоретизировать. Но те, кто работает плотно с простыми, мудро улыбаются.
Кстати, если числа попарно не различны, то можно привести милый пример двойного удивления:
