Ответ оппонентам:
Мастак, поразмышляйте над
(я серьёзно, с одной стороны складываются абсолютно тождественные единицы, а с другой стороны это различные 1-цы).
P. S. Также существует понятие «мультимножества», допускающее повторение элементов.
Пример 1. Пусть у вас есть множество
. Сколько элементов в данном множестве?
, а не
.
Пример 2. У Пети есть три рубля, новеньких, блестящих, только что из Монетного двора. Сколько у Пети может быть денег по величине? Ничего, 1 рубль, 2 рубля, 3 рубля. Как ни крути. Но Петю убеждают, что рубли все же разные
и, к примеру, одни 2 рубля – это не те 2 рубля, что из других момент, которые Петя как ни старался, не мог отличить.
Суть элемента в множестве с точки зрения мощности – место. Одно место. Единицами я обозначаю места в множестве, как колышками.
Когда вы едете, например, в путешествие на каком-то транспорте, вам говорят, вы можете иметь, к примеру, только 3 места
, а чем вы их заполните, каким багажом, сумками, чемоданами – это ваше дело. По сути в унифицированном множестве 1-ца обозначает место в множестве. Три единицы – три места, куда можно поместить какие угодно три различных элемента. Это же по сути и означает количество элементов.
Мне же просто удобно рассматривать множества, состоящие из одних 1, понимая, что обычная сумма их дает их естественное количество. И не нужно, когда я складываю кол-во элементов
все же складывать
. И 1–ца для меня вместе с тем – обозначение некоей целостности (элемента), отличной от всего остального.
К тому же, знаете, Коэн в своем док-ве рассматривал независимые одинаково распределенные случайные величины, принимающие значения 0 и 1, причем брал их в количествах, больших континуума. Так вот они тоже между собой равны, унифицированы, а значит представляют один элемент по вашей логике. Я же рассматриваю просто независимые 1-цы. Тождественные величины и все же разные,
(перпендикулярные) функции, которые еще проще, чем независимые случайные величины, просто независимые 1-цы, безликие места в множестве.
Еще пример относительно использования случайных величин Коэном. У Вани есть три попытки подбросить монетку. Рассмотрим это как множество попыток Вани подбросить монетку. Ваню просят провести эксперимент с подбрасыванием монетки в соответствие с множеством подмножеств данного множества попыток. И Ваня не понимает, то ли у него есть всего четыре возможности – это не подбрасывать монетку, подбросить одни раз – одна попытка, подбросить два раза подряд – две попытки и подбросить три раза подряд – три попытки, или есть возможность ничего не делать, три возможности по одной попытке, три возможности по две попытки, одна возможность совершить три попытки. Ваня в растерянности.
А вот что по этому поводу говорит сам Кантор: «Мощностью или кардинальным числом множества M мы называем то общее понятие, которое получается при помощи нашей активной мыслительной способности из M, когда мы абстрагируемся от качества его различных элементов m и от порядка их задания. Так как из каждого отдельного элемента m, когда мы отвлекаемся от качества, получается некая «единица», то само кардинальное число оказывается множеством, образованным исключительно из единиц, которое существует как интеллектуальный образ или как проекция заданного множества M в наш разум».
P. S. Впрочем, чтобы это не смущало, я потом взял произвольные элементы
, нумерацию переведя в индексы.
По поводу док-ва, у нас есть соответствие:
…
И у нас есть только два числа: 0 (конечные степени) и 1 (бесконечная степень). Пусть есть число
, чему оно равно?
. Если это не кажется очевидным и мнится, что там может быть еще что-то между, то обратитесь к 2-адическому док-ву, поскольку, если оно верно, то верно и то, о чем я говорю. (Впрочем, так как вы лично в континуум не верите, и, как я понял, считаете его счетным, то и континуум гипотезы для вас не существует; кстати, существуют теории, которые считают континуум счетным, но я эти теории почитаю псевдотеориями, это все равно, что, к примеру, если я имею одно и одно яблоко – два яблока, но мне хотят доказать, что у меня их 3 или 4 и т.д., эти теории авторы пусть рассказывают кассирам, когда они им сдачу давать будут, я же придерживаюсь понятия, что мощность множества – понятие абсолютное, как 1-ца).
atlakatl, от точки
до точки
– 0 шагов, ибо это результат бесконечной степени. С тем, что простым прибавлением 1-ц к счетному множеству получается только счетное множество, я согласен. Но и к конечному числу если вы будете прибавлять конечное число 1-ц, то все равно будете получать конечное число, а не счетное. Чтобы из конечного получить счетное, надо прибавить бесконечное счетное.
Прибавляя по 1-це я получаю конечные степени, у меня возникает таким образом единственная переменная величина – это степень
, которая может быть только конечной или бесконечной. (Я давно поправил, что по одной точке прибавлением нельзя дойти до континуума, просто я не могу отредактировать здесь).
Someone. Посмотрите на суммы
(эта сумма включительно до k, а не только до k-1), для каждого конечного
она конечна, то есть, во-первых, в этом ряду, множестве
, нет суммы
, а во-вторых сумма
(и любое бесконечное количество 1-ц бесконечно). Вопрос: бесконечность как верхний показатель суммы включен в сумму? Мы видим, что включен. Вы можете утверждать, что это сумма по всем конечным, исключая бесконечность, но сумма 1-ц до бесконечности утверждает обратное. Ибо, если мы рассмотрим частные суммы только по конечным числам
, то бесконечная сумма не будет принадлежать им, ибо она представляет бесконечность, но коль запишем
, то бесконечность уже включается. Также и
;
. Вот вам и определение суммы, нижний и верхний показатели суммы включены. Если же вы скажите, что сумма только по конечным, тогда нельзя писать символ бесконечности, ибо он указывает на включение бесконечности. Если брать сумму только по конечным, то до бесконечности мы не дотягиваем, она исключается.
Я и в учебнике (академика) П. Александрова «Введение в теорию множеств и общую топологию» видел, что он понимал под бесконечной суммой только по конечным числам, но это оказывается неверным, вот и все.
Далее предположим, что 2-адическая сумма
счетна, то есть она только по конечным степеням из
и не включает в себя
. Так как она является заведомо самой большой из всех 2-адических сумм, предшествующих ей, то каждая из предшествующих также не более чем счетна. Причем все они различны, в смысле отличаются друг от друга по крайней мере на 1-цу. А тогда мы занумеровали континуум счетными числами, то есть построили биекцию между континуумом и счетными числами, что противоречиво (?!) Странно было бы, если бы мы слева выписали континуум чисел, а справа различные суммы оставались бы счетными. Проще говоря, если последний 2-адический номер счетен, то континуум счетен. Полученное противоречие доказывает, что исходная сумма континуальна и включает в себя
. А посему
.
Давайте прямо посчитаем, сколько у нас справа и слева чисел. 2-адических чисел
(степень по числу в ряде
) – видите, бесконечность включается уже (а если нет, то тогда и вещественных чисел в двоичном представлении на отрезке
будет счетное число); слева будем считать так: множество со всеми нулями и множество с одной единицей в нулевом разряде – 2, множества с двумя единицами в первом разряде – 2, множества с двумя единицами во втором разряде – 4 и т.д. В сумме
. А вот если мы будем слева брать только по конечным степеням, то до континуума мы не дойдем, так что бесконечность включена.
Также заметим, что в начале до континуума у нас имеется следующее неравенство
, для любого
. А
задает все натуральные числа до
включительно путем всевозможных комбинаций степеней 2-ки от 0 до k-1. Это к тому, что до континуума порядок на 2-числах вполне определен.
Если к числу
прибавить единицу 1, то получится
, можете считать это пустым множеством. Я же даю иную интерпретацию сему факту как показателю некого предела мощности континуума, предела точек евклидова пространства, являющегося основой нашей физической реальности. Для меня же то, что
вовсе не означает, что это пустое множество и, например, нет множества подмножеств континуума. Похоже: находясь в трехмерном пространстве, составляющим нашу реальность, мы все же рассматриваем пространства и 4-ой и больших размерностей уже как чисто идеальные конструкции, похоже и с мощностями, превышающими континуум. Но вот что важно и что дает мне право давать такую интерпретацию, так это то, что операции умножения на 2 до бесконечности соответствует обратная операция деления пополам до бесконечности. Так вот если взять некую единичную длину и делить ее пополам до бесконечности, то мы получаем величину
, а в силу того, что
, мы получаем, что величина
неделима более, ибо на ноль делить нельзя. Вот это величину я и полагаю в качестве величины точки, отличной от ноля, что соответствует древнему определению точки Эвклида, как идеального неделимого атома, того, что не имеет частей. А отсюда проистекает важное следствие, что на
и вовсе нет открытых множеств кроме пустого множества и всего
, то есть все множества на
замкнуты, что вполне естественно в силу того, что все множества содержат все свои точки и граничные в том числе, но это предмет другой темы. Отмечу также, что я теперь несколько критически отношусь к понятию предела сходимости по Коши, и к пределу сходимости ряда в частности (ибо
).
С утверждением, что «если мы не можем нечто определить, это не значит, что оно не существует» я согласен. Только это вы к чему? К тому, что если мы не можем определить множества промежуточные по мощности между конечными и счетным, то это не значит, что они не существуют, не прячутся где-то между? Ну так вам никто не запрещает так считать. Каждый волен верить в какую угодно глупость.
И в математике не достаточно только заучивать стандартные формулировки.
Примечание. Гильберт об одном из аспирантов, бросившем математику и «переквалифицировавшемся» в поэты: «Это хорошо, у него было слишком мало фантазии для математика». Хотя я с этим не вполне согласен, ибо в математике полет фантазии довольно ограничен математической определенностью.
Можно спросить, а какому натуральному числу слева в нашей биекции между множествами подмножеств
и 2-числами соответствует бесконечно удаленная единица справа в 2-числах? Ответ: бесконечно удаленному числу слева, ибо бесконечность – это то, что не имеет конца…
Натуральные (конечные) числа составляют счетную бесконечность, поэтому счетная бесконечность должна принадлежать множеству натуральных чисел. Ведь мы говорим, натуральный числа до бесконечности (поэтому бесконечность и включается в этот ряд в пределе символично как
). Ибо интересно отметить, что хотя множеству конечных натуральных чисел
, для конечных
, и не принадлежит сумма
, но она уже является подмножеством множества натуральных чисел, ибо натуральный ряд составляет уже бесконечность и содержит в себе бесконечные множества (например, множество четных чисел или все
), первичной же их основой является просто
, бесконечно удаленная 1-ца слева в множестве подмножеств натурального ряда, которой справа отвечает бесконечно удаленная 2-адическая 1-ца,
, равная как раз континууму.
Парадоксальность натурального ряда состоит в том, что он хоть и состоит по определению из конечных чисел, но если мы рассмотрим все конечные числа, то ряд составляет бесконечность, то есть «максимальным натуральным» числом оказывается не конечное число, а счетная бесконечность
. Если мы безостановочно будем прибавлять по 1-це, то получим ее, а с остановками – все натуральные, конечные числа. Поэтому счетная бесконечность оказывается подмножеством натурального ряда как элемент.
Для примера рассмотрим бесконечное подмножество
, которое имеет вид
И спрашивается, какое конечное натуральное число соответствует бесконечно удаленной единице? Это может быть только бесконечное число, равное бесконечной суме 1-ц. Поэтому
включается в множество натуральных чисел,
.
Если бы
не принадлежало бы
, то
вообще не было бы бесконечным, ибо мы имеем бесконечную последовательность возрастающих чисел, то есть последовательность
. Поэтому множество всех конечных чисел содержит и бесконечность как элемент. Конечные переходят в бесконечность, когда мы не останавливаемся на пути их увеличения.
Мы заключаем о бесконечности конечных чисел на основании того, что каким бы большим ни было конечное число прибавление 1-цы дает большее число, то есть ряд конечных чисел не имеет конца. Но когда мы говорим о «всех» строго возрастающих конечных числах, то тут же в их ряд естественным образом включается бесконечность. Если нет, то так как натуральных (конечных) чисел бесконечное число (счетное), то просьба назвать бесконечное конечное число? Такового нет, а потому бесконечность как элемент необходимо входит в бесконечное множество
. Если же мы говорим только о конечных числах, то мы не можем допустить бесконечность в их ряды. Поэтому строго говоря мы не можем рассмотреть все только конечные числа. Когда мы говорим о бесконечно больших конечных, у нас процесс оказывается всякий раз не завершенным, не уходящим в бесконечность, а фиксируется, останавливается на каком-то бесконечно большом конечном числе.
Примечание. Также я понял еще одну интересную вещь, исходя из того, что
принадлежит как бесконечно удаленный элемент множеству натуральных чисел,
. Рассмотрим множество всех кардиналов
. Это строго возрастающая последовательность кардинальных чисел, мощностей. Так вот Кантор, а вслед за ним и Хаусдорф в своей книги «Теория множеств» (под редакцией академиков Колмогорова и Александрова) утверждают, что этого множества не существует, наткнувшись на поразительный парадокс, то есть данное множество по их представлениям оказывается невозможным. В связи с чем Кантор даже ввел понятия «консистентных» (состоятельных) множеств и «неконсистентных» множеств. А парадокс, по их мнению, заключается в том, что если мы рассмотрим простую сумму всех этих кардиналов
, то получим кардинал, во-первых, больший каждого из представленных в множестве кардиналов, а во-вторых, не совпадающий ни с одним из представленных в множестве кардиналов по мощности, то есть строго больше каждого. И отсюда заключается, что мы построили кардинал строго больший, чем все представленные в множестве кардиналы (О, как и я ошибался, спотыкался на похожем, когда произносил слова «если строго больше каждого, то больше всех»!). На что хочется заметить, во-первых, данный суммарный кардинал состоит только из представленных кардиналов и более не из чего! То есть, он естественно не может быть строго больше всех представленных в множестве кардиналов, ибо состоит только из них, и сливается воедино с бесконечно удаленным кардиналом по мощности. Действительно, предположим, что суммарный кардинал строго больше, чем все представленные в множестве кардиналы, тогда давайте вычтем из него все эти кардиналы, и что тогда от него останется? Ничего. 0. То есть он не может быть строго большим, чем все представленные кардиналы.
Давайте рассмотрим примеры, иллюстрирующие данное положение.
Рассмотрим множество только строго конечных степеней 2-ки, где k – строго конечно:
. С одной стороны – это множество не конечно (а значит бесконечно), с другой стороны, каждый его член принадлежит строго множеству натуральных, конечных чисел, а общая сумма строго по конечным степеням счетна. Так вот из нашего понимания множества натуральных чисел, как бесконечного и содержащего бесконечно удаленный элемент, данное множество включает необходимо в себя бесконечность как бесконечно удаленный элемент
, с которым и сливается общая сумма.
Рассмотрим вышеприведенный ряд, но где k может быть и бесконечным, то есть множество
. Тогда сумма данного ряда сливается с бесконечно удаленным элементом по мощности
, то есть эта сумма континуальна и опять не строго больше, чем все члены в данном множестве.
Рассмотрим теперь обычный натуральный ряд
. Так вот по нашим представлениям он необходимо содержит бесконечность как бесконечно удаленный элемент
. Вспомним, k может быть строго конечным или бесконечным! А потом сумма данного ряда в любом случае счетна и хотя и строго больше каждого конечного члена в множестве, но сливается воедино с бесконечно удаленным элементом, то есть с
-тью. В любом случае натуральный ряд счетен и сумма счетна, и не возникает при суммировании кардинала строго большего, чем счетный.
Тем самым множество всех кардиналов существует непротиворечивым образом, противоречие снимается. И если принять во внимание, что операция построения множества подмножеств идет как +1, то мы получаем, что множество кардиналов счетно. Кардио Кардинале (Кардинал кардиналов) счетен.