У нас есть
тема про физико-математические омонимы. Но омонимы типа "линейный" в выражениях "линейное уравнение - линейный алгоритм - линейный порядок - линейная связность - etc." - это просто курьез, ни к каким недоразумениям они привести не могут. Эту тему я хочу посвятить более коварным случаям: когда в одной и той же области разными людьми (я, конечно, имею в виду авторов учебников и монографий, а не фриков с горы) одинаково называются близкие, но разные понятия. Так что, привыкнув к одной терминологии и случайно попав в другую, смотришь на теорему и не понимаешь, кто здесь верблюд.
Самый известный пример: одни авторы включают нуль в
, другие нет. Но он и самый безобидный, поскольку самый известный: все знают об этой двойственности и первым делом интересуются, куда аффтар относит нуль. А вот о примеры менее известные можно запросто разбить лоб. Скажем, в куче учебников топологии (см., например, Энгелькинг, общая топология) окрестность точки
определяется как открытое множество, содержащее эту точку. Однако есть другая терминологическая традиция: Куратовский (Топология, т.1) определяет окрестность точки
как любое множество
такое, что
. О чем я узнал не далее как сегодня вечером, предварительно прочитав формулировки Куратовского в привычной (и, как я полагал, единственной) терминологии и потратив некоторое время на мучительные попытки вспомнить, где мой галоперидол.
Собственно, я хотел бы, чтобы эта тема стала предупреждением "осторожно:
мины разночтения в терминах!", чтобы по мере сил уменьшить количество людей, попадающих в такую дурацкую ситуацию.
Меня больше всего интересуют примеры из математики, но можно нести сюда и другие науки - физику, химию, биологию, CS. Только, пожалуйста, не надо какой-нибудь педагогики и прочих болтологических областей - там и терминологии как таковой нет, каждый аффтар кто во что горазд выражается.
В путь.