2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Силовые линии электрического диполя
Сообщение12.09.2016, 06:52 
перед нами - горизонтально расположен электрический диполь. Выбираем одну силовую линию, выходящую вертикально из положительного полюса и входящую также вертикально в отрицательный.
Вопрос: где кривизна этой линии максимальна, а где минимальна.
В физ.литературе рисуют, не вникая в подробности. У Фейнмана на рисунке кривизна уменьшается от полюса к срединной плоскости, с приближением к которой кривизна снова увеличивается. Где-то просто рисуют циркулем!
При решении прикладной физ.задачи я был поставлен перед фактом: или кривизна максимальна у полюсов и минимальна в срединной плоскости (горизонтально лежащая дыня), или физический постулат неверен.
... понятно, что полярный вектор напряжённости эл.поля - функция нескольких переменных.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 11:37 
Аватара пользователя
mihailsamsonov в сообщении #1150673 писал(а):
В физ.литературе рисуют, не вникая в подробности. У Фейнмана на рисунке кривизна уменьшается от полюса к срединной плоскости, с приближением к которой кривизна снова увеличивается. Где-то просто рисуют циркулем!

До конца 20 века построение таких картинок было очень трудоёмким делом, и рисовали их качественно.

Сегодня общедоступны математические и физические пакеты, которые построят вам что хошь. Соответственно, для диполя и таких построенных картинок - уже пруд пруди. Достаточно просто поискать, и найдётся.

P.S. Кажется, у идеального диполя это вообще строго окружности. Так что непостоянство кривизны возникает только за счёт неидеальности - ненулевого расстояния между зарядами. И получается величиной высшего порядка малости, которую на рисунке не так-то просто углядеть. Надо формулами прикидывать.

-- 12.09.2016 11:37:58 --

mihailsamsonov в сообщении #1150673 писал(а):
При решении прикладной физ.задачи я был поставлен перед фактом: или кривизна максимальна у полюсов и минимальна в срединной плоскости (горизонтально лежащая дыня), или физический постулат неверен.

Такие утверждения гораздо чаще происходят из ошибок утверждающего.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 11:54 
по сути ничего?

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 11:55 
Аватара пользователя
Объясните вашу "прикладную задачу" и "факт", а также о каком "постулате" речь.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 12:20 
Munin в сообщении #1150693 писал(а):
Кажется, у идеального диполя это вообще строго окружности. Так что непостоянство кривизны возникает только за счёт неидеальности - ненулевого расстояния между зарядами. И получается величиной высшего порядка малости, которую на рисунке не так-то просто углядеть. Надо формулами прикидывать.

Ваши окружности, в случае идеального диполя, наверное касаются его оси в точке посередине между зарядами?
Тогда, в этом идеальном случае, все силовые линии выходят из зарядов под одним углом -- нулевым с осью и вопрос ТС не имеет смысла, т.к. нет таких силовых линий, которые выходят из заряда перпендикулярно оси диполя :)

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 12:30 
Аватара пользователя
Я автора понял так: он спрашивает о той линии, на которой точки 1 и 2:
Изображение
Ну, или о соседней с ней, не знаю, какая там вертикальнее выходит.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 12:52 
Аватара пользователя
wrest в сообщении #1150702 писал(а):
Ваши окружности, в случае идеального диполя, наверное касаются его оси в точке посередине между зарядами?

В случае идеального диполя, эти три точки совпадают: заряды бесконечно близки друг к другу. Так что да, и нет.

Под "идеальным диполем" я подразумевал точечную систему зарядов с ненулевым дипольным, и нулевыми всеми остальными мультипольными моментами.

-- 12.09.2016 12:54:17 --

Хм, да, моё замечание может быть не в кассу, поскольку для указанной линии как раз неидеальность (расстояние между зарядами) существенна.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 13:44 
Что то не получается придумать физическую задачу, в которой форма силовой линии поля как-то могла бы использоваться. Распределение поля вообще в пространстве - да. А вдоль только какой то отдельно взятой условной линии, к которой ничто не привязано - непонятно.

Вопрос - а как вообще кривизну посчитать из поля? Это что то наподобие $(\hat{E}\nabla)\hat{E}$, где $\vec{E} = E\hat{E}$?

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 14:31 
rustot в сообщении #1150717 писал(а):
Вопрос - а как вообще кривизну посчитать из поля? Это что то наподобие $(\hat{E}\nabla)\hat{E}$, где $\vec{E} = E\hat{E}$?

Думаю, что-то наподобие модуля этого вектора.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 15:22 
Аватара пользователя
Для кривой $\mathbf r(t)$ (параметр $t$ не обязательно натуральный) кривизна
$k=\dfrac{|\dot{\mathbf r}\times \ddot{\mathbf r}|}{|\dot{\mathbf r}|^3}$,
где точка — дифференцирование по $t$. Интегральная кривая определяется уравнением $\dot{\mathbf r}=\mathbf E$, тогда
$k=\dfrac{|\mathbf E\times \dot{\mathbf E}|}{E^3}=\dfrac{|\mathbf E\times (\dot{\mathbf r}\cdot\nabla) \mathbf E|}{E^3}=\dfrac{|\mathbf E\times (\mathbf E\cdot\nabla) \mathbf E|}{E^3}$
Так что — почти угадали.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 15:34 
А с учетом того что поле является суммой полей, каждое из которых имеет нулевую кривизну и в окрестности точечного заряда одно из слагаемых бесконечно больше другого, не получится что в окрестности зарядов кривизна ровно ноль?

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 15:34 
svv в сообщении #1150723 писал(а):
Так что — почти угадали.

А есть разница?

-- 12.09.2016, 15:36 --

rustot в сообщении #1150724 писал(а):
А с учетом того что поле является суммой полей, каждое из которых имеет нулевую кривизну и в окрестности точечного заряда одно из слагаемых бесконечно больше другого, не получится что в окрестности зарядов кривизна ровно ноль?

Кривизна силовых линий? Да, конечно. Но не "ровно ноль", а ноль в пределе нулевого расстояния от одного заряда.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 15:42 
Аватара пользователя
Учитывая, что $$(\mathbf G\cdot\nabla)\mathbf F=\frac 1 2[\nabla\times(\mathbf F\times \mathbf G)+\nabla(\mathbf F\cdot \mathbf G)-\mathbf F(\nabla\cdot \mathbf G)+\mathbf G(\nabla\cdot \mathbf F)-\mathbf F\times(\nabla \times \mathbf G)-\mathbf G\times(\nabla \times \mathbf F)]$$(справочник Корна по математике, с.172), формулу можно упростить. Подставив сюда $\mathbf F=\mathbf G=\mathbf E$ и учитывая, что ротор и дивергенция $\mathbf E$ равны нулю, получим:
$(\mathbf E\cdot\nabla)\mathbf E=\frac 1 2 \operatorname{grad}(\mathbf E\cdot \mathbf E)=E\operatorname{grad}E$
$k=\dfrac{|\mathbf E\times \operatorname{grad}E|}{E^2}$

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 16:01 
$k=\dfrac{|\mathbf E\times (\mathbf E\cdot\nabla) \mathbf E|}{E^3}$, $\mathbf E = E\hat{\mathbf E}$, $|\hat{\mathbf E}|=1$
$k=\dfrac{|E\hat{\mathbf E}\times (E\hat{\mathbf E}\cdot\nabla) (E\hat{\mathbf E})|}{E^3}$
$k=\dfrac{|\hat{\mathbf E}\times (\hat{\mathbf E}(\hat{\mathbf E}\cdot\nabla) E + E(\hat{\mathbf E}\cdot\nabla) \hat{\mathbf E})|}{E}$
$k=|\hat{\mathbf E}\times (\hat{\mathbf E}\cdot\nabla) \hat{\mathbf E}|$
$k=|(\hat{\mathbf E}\cdot\nabla) \hat{\mathbf E}|$
В последнем упрощении мы учли, что производная постоянного по модулю вектора ему ортогональна.

 
 
 
 Re: силовые линии электрического диполя
Сообщение12.09.2016, 16:09 
Аватара пользователя
Да, Вы правы, так лучше.

 
 
 [ Сообщений: 50 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group