Попов А.В. писал(а):
Чем прекрасна математика, так это тем, что большинство вопросов в ней имеют вполне определенный и точный ответ и всякие мнения на них в принципе не имеют значения.
Решение задачи:
Множество шаров которые останутся в ящике в полдень является подмножеством множества всех шаров (пронумрованных натуральными числами). Но при этом для любого шара верно, что до наступления полудня он успеет оказаться в ящике и быть вынутым. Иными словами для любого шара верно, что он не будет содержаться в ящике в полдень.
Множество "полуденных" шариков пусто.
Никакого парадокса не вижу.
Верно и то, что перед любым вынутым до полудня шаром, есть
всегда шар.
Можно упростить задачку.
За секунду до полудня кладём шары 1,2 и вынимаем шар №1
За 1/2 секунды до полудня кладём шары 3,4 и вынимаем шар №2
И т. д
Будут ли в ящике в полдень шары?
Допустим, не будут.
А теперь ещё упростим. Откажемся от нумерации!
За секунду до полудня кладём 2 шара и вынимаем один шар
За 1/2 секунды до полудня кладём 2 шара и вынимаем один шар.
И т. д
Будут ли в ящике в полдень шары?
Будут.
Выходит, простой нумерацией можно изменить результат.
Это ль не парадокс?