2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 Элементарная задача по теории чисел
Сообщение11.04.2008, 07:33 
Заслуженный участник


08/04/08
8562
Пусть f(x) - многочлен степени большей, либо равной 1, принимающий только простые значения на множестве простых чисел. Доказать, что такого многочлена не существует.
Обязательная просьба: использовать в доказательстве математику не сильнее 11 класса, так как эта задача - со школьной олимпиады.

 Профиль  
                  
 
 
Сообщение11.04.2008, 07:38 
Заслуженный участник
Аватара пользователя


23/08/07
5502
Нов-ск
$$f(x)=x$$

 Профиль  
                  
 
 
Сообщение11.04.2008, 07:41 
Заслуженный участник
Аватара пользователя


18/05/06
13440
с Территории
Убивал бы во-первых об стену тех, кто ставит такие ограничения. Я знаю класс сложности "циркулем и линейкой", знаю класс "NP", ну и ещё несколько - а теперь оказывается, есть ещё какой-то "11 класс".
Во-вторых, такой многочлен существует: f(x)=x.

Добавлено спустя 35 секунд:

Опередили. Great minds think alike. :lol:

 Профиль  
                  
 
 
Сообщение11.04.2008, 08:00 
Заслуженный участник
Аватара пользователя


23/08/07
5502
Нов-ск
ИСН писал(а):
Опередили. Great minds think alike. :lol:

Не совсем одинаково. Бить об стену я не догадался. :(

 Профиль  
                  
 
 
Сообщение11.04.2008, 08:09 
Заслуженный участник


09/02/06
4401
Москва
Более общее утверждение здесь уже обсуждали. Только для доказательства так или иначе приходится использовать бесконечность простых чисел в арифметических прогрессиях.

 Профиль  
                  
 
 
Сообщение11.04.2008, 09:44 
Заслуженный участник


26/06/07
1929
Tel-aviv
ИСН писал(а):
Убивал бы во-первых об стену тех, кто ставит такие ограничения.

Не согласен с Вами! В конце концов, вся математика - это прихоть человечества. Пусть каждый развлекается как хочет и как может. А мы ( те же человеки ) оценим, если сможем. В этом процесе, имхо, весь кайф.

 Профиль  
                  
 
 Задачка2 по теории чисел
Сообщение12.04.2008, 18:01 
Заслуженный участник


08/04/08
8562
Пусть $n$ - натуральное число, $p$ - простое, $q$ - произвольный делитель $(n+1)^p-n^p$. Доказать, что $q-1$ делится на $p$.
Желательно доказать только с помощью математики 11 класса.

 Профиль  
                  
 
 
Сообщение12.04.2008, 18:06 
Заслуженный участник


08/04/08
8562
Я видимо неправильно выразился. То что $f(x)=x$ я уже понял. А насчет замечания Руста - я в шоке: задачу дали на олимпиаде в 11 классе! :) А про прогрессии я тоже знаю. В общем - спасибо.

 Профиль  
                  
 
 
Сообщение12.04.2008, 18:12 
Модератор
Аватара пользователя


11/01/06
5710
 !  Sonic86, не плодите похожите темы. Пишите в одной!

 Профиль  
                  
 
 Re: Задачка2 по теории чисел
Сообщение12.04.2008, 19:03 
Заслуженный участник
Аватара пользователя


11/01/06
3829
Sonic86 писал(а):
Пусть $n$ - натуральное число, $p$ - простое, $q$ - произвольный делитель $(n+1)^p-n^p$. Доказать, что $q-1$ делится на $p$.

Приводимое решение можно, конечно, переделать под школьное, но мне лень. Очевидно, можно считать, что $q$ простое. Понятно, что $q\nmid n$. Пусть $an\equiv1\pmod q$, тогда $(a+1)^p\equiv1\pmod q$. В частности, $a+1$ не делится на $q$. Если $d$ - показатель числа $a+1$ по модулю $q$ (т.е. наименьшее натуральное $d$ с условием $(a+1)^d\equiv1\pmod q$), то $d|p$, т.е. $d=1$ либо $d=p$. Первый случай исключается, т.к. $a$ не делится на $q$, поэтому $d=p$. Поскольку по малой теореме Ферма, $d|q-1$, то всё доказано.

Добавлено спустя 2 минуты 33 секунды:

Sonic86 писал(а):
То что $f(x)=x$ я уже понял.

Если к первой задаче добавить условие $f(x)\ne x$, то получится очень хорошая задачка, которую непонятно как решать школьными методами.

 Профиль  
                  
 
 
Сообщение14.04.2008, 14:31 
Заслуженный участник


08/04/08
8562
RIP! Спасибо! Я Вас люблю! И Руста тоже. :D
Кстати, можно обобщить это утверждение: разность любых $p$-ых степеней, взаимно простых с делителями уменьшаемого и вычистаемого, разлагается на простые множители вида $kp+1$. И тогда подставляя вместо этих чисел многочлены, удовлетворяющие условию взаимной простоты мы получаем много утверждений подобного вида!
Странно, как это я сам не допер!

 Профиль  
                  
 
 Re: Задачка2 по теории чисел
Сообщение16.04.2008, 00:37 
Заслуженный участник
Аватара пользователя


18/12/07
762
Sonic86 писал(а):
Пусть $n$ - натуральное число, $p$ - простое, $q$ - произвольный делитель $(n+1)^p-n^p$. Доказать, что $q-1$ делится на $p$.
Желательно доказать только с помощью математики 11 класса.

Сие невозможно. Ибо существующие доказательства в теории чисел требуют понятия первообразного корня и теорем, связанных с ним.

 Профиль  
                  
 
 Re: Задачка2 по теории чисел
Сообщение16.04.2008, 01:05 
Заслуженный участник
Аватара пользователя


11/01/06
3829
Коровьев писал(а):
Sonic86 писал(а):
Пусть $n$ - натуральное число, $p$ - простое, $q$ - произвольный делитель $(n+1)^p-n^p$. Доказать, что $q-1$ делится на $p$.
Желательно доказать только с помощью математики 11 класса.

Сие невозможно. Ибо существующие доказательства в теории чисел требуют понятия первообразного корня и теорем, связанных с ним.

Приведённое выше доказательство не требует. Оно абсолютно "школьное" по модулю какой-нибудь основной теоремы арихметики, которую школьники вроде знают (пусть и без доказательства), просто для школьника оно может выглядеть слегка лаконичным (хотя кто его знает, этого школьника, может и наоборот :D).

 Профиль  
                  
 
 Re: Задачка2 по теории чисел
Сообщение16.04.2008, 09:54 
Заслуженный участник
Аватара пользователя


18/12/07
762
RIP писал(а):
Коровьев писал(а):
Sonic86 писал(а):
Пусть $n$ - натуральное число, $p$ - простое, $q$ - произвольный делитель $(n+1)^p-n^p$. Доказать, что $q-1$ делится на $p$.
Желательно доказать только с помощью математики 11 класса.

Сие невозможно. Ибо существующие доказательства в теории чисел требуют понятия первообразного корня и теорем, связанных с ним.

Приведённое выше доказательство не требует. Оно абсолютно "школьное" по модулю какой-нибудь основной теоремы арихметики, которую школьники вроде знают (пусть и без доказательства), просто для школьника оно может выглядеть слегка лаконичным (хотя кто его знает, этого школьника, может и наоборот :D).

Ну, тогда и основная задачка темы доступна школьником. Нужно только знать формулировку теоремы Дирихле о простых числах в арифметической прогрессии.
МТФ и опирается как раз на существование первообразных корней по простому модулю.
Впрочем, можно попробовать доказать МТФ и школьными методами. Вряд ли Ферма использовал современные понятия в теории чисел.

 Профиль  
                  
 
 
Сообщение16.04.2008, 11:03 
Заслуженный участник
Аватара пользователя


21/12/05
5936
Новосибирск
Коровьев писал(а):
Впрочем, можно попробовать доказать МТФ и школьными методами.

Можно - принцип Дирихле. :D
Когда-то в школе сам доказывал.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 45 ]  На страницу 1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group