Разве не это становится венцом теории меры?
Смотря в какую сторону отсчитывать "венец" :-)
Да, в каком-то смысле - становится венцом.
А в каком-то другом смысле - это всё не нужно во многих частных случаях, интересных как приложениям, так и другим областям математики. Например, дифференциальной геометрии - это всё не нужно. Там рассматриваются такие пространства, которые локально устроены как
и этого за глаза достаточно. Сложности там идут в других направлениях.
Вопрос, соответственно, в следующем: если мы будем строить теорию интегрирования на многообразиях, следуя по пути общей теории меры, получим ли мы что-то новое или мы придем к тем же результатам, которые дают дифференциальные формы?
По сути, к тем же.
Может быть, я неправ, но скорее в смысле "не совсем прав". Может понавылезать какая-нибудь экзотика. Но роли большой она играть не будет.
Экзотика, наверное, в том же смысле, в котором пространство обобщённых функций богаче функций, "собранных" из дельт и их производных.
----------------
Мне нравится вот это вот замечание:
In applications usually one can ignore special cases, or even the cases perceived as anomalous. This is something that mathematicians do not allow to themselves.
Точно так же, как приложениям не интересны особые случаи, они неинтересны и многим областям математики, "выросшим" изначально на потребу приложениям. Но при этом математики, занимающиеся обоснованиями, как раз в основном озабочены этими особыми случаями, они - их главный предмет интереса (без них доказательства не склеиваются).
То есть, математики занимают двойственные позиции: одни - "поставщики" некоторой теории - занимаются особыми случаями, а другие - "потребители" - отмахиваются от них. И прикладники - тоже отмахиваются. (И я тоже.)
----------------
И возвращаясь к теме, соответственно, "венцом" теории одни и другие математики могут считать разные вещи.