Соответсвенно, задав на этом упорядоченном множестве интервальную топологию, превращаем его в упорядоченное пространство.
А всякое упорядоченное пространство - нормально.
Если цель состоит в том, чтобы на всяком множестве задать нормальную топологию, то это стрельба из пушки по воробьям. Можно просто взять дискретную топологию (это та, в которой все подмножества являются открытыми).
Думаю доказать так: упорядочиваем
![$Y$ $Y$](https://dxdy-02.korotkov.co.uk/f/9/1/a/91aac9730317276af725abd8cef04ca982.png)
(это возможно по теореме Цермело), и вводим порядковую топологию на нем, обозначая его
![$Z$ $Z$](https://dxdy-02.korotkov.co.uk/f/5/b/5/5b51bd2e6f329245d425b8002d7cf94282.png)
. Тогда
![$Z$ $Z$](https://dxdy-02.korotkov.co.uk/f/5/b/5/5b51bd2e6f329245d425b8002d7cf94282.png)
- упорядочено и
![$Y$ $Y$](https://dxdy-02.korotkov.co.uk/f/9/1/a/91aac9730317276af725abd8cef04ca982.png)
- замкнуто в
![$Z$ $Z$](https://dxdy-02.korotkov.co.uk/f/5/b/5/5b51bd2e6f329245d425b8002d7cf94282.png)
так как
![$Z$ $Z$](https://dxdy-02.korotkov.co.uk/f/5/b/5/5b51bd2e6f329245d425b8002d7cf94282.png)
содержит все точки (и только их)
![$Y$ $Y$](https://dxdy-02.korotkov.co.uk/f/9/1/a/91aac9730317276af725abd8cef04ca982.png)
.
Здесь осложнение такое: отношение линейного порядка и топология на множестве
![$X$ $X$](https://dxdy-01.korotkov.co.uk/f/c/b/f/cbfb1b2a33b28eab8a3e59464768e81082.png)
индуцируют, соответственно, отношение линейного порядка и топологию на множестве
![$Y$ $Y$](https://dxdy-02.korotkov.co.uk/f/9/1/a/91aac9730317276af725abd8cef04ca982.png)
; беда в том, что индуцированный порядок запросто может определять топологию, отличающуюся от индуцированной топологии.
Я так понял что фраза "Можно считать что
![$Z\subseteq X$ $Z\subseteq X$](https://dxdy-04.korotkov.co.uk/f/3/a/b/3ab05c9448e8f7287b656d20d79db41282.png)
" - означает что
![$Z$ $Z$](https://dxdy-02.korotkov.co.uk/f/5/b/5/5b51bd2e6f329245d425b8002d7cf94282.png)
может иметь другую топологию чем
![$X$ $X$](https://dxdy-01.korotkov.co.uk/f/c/b/f/cbfb1b2a33b28eab8a3e59464768e81082.png)
.
Вообще-то, задача имеет смысл только в том случае, если
![$Z$ $Z$](https://dxdy-02.korotkov.co.uk/f/5/b/5/5b51bd2e6f329245d425b8002d7cf94282.png)
имеет линейный порядок и топологию, индуцированные из
![$X$ $X$](https://dxdy-01.korotkov.co.uk/f/c/b/f/cbfb1b2a33b28eab8a3e59464768e81082.png)
, причём, индуцированный порядок определяет индуцированную топологию.