2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Работа магнитного поля, сила Ампера
Сообщение05.04.2016, 15:38 
Аватара пользователя


26/11/14
761
Всем доброго времени суток. Уважаемые плз помогите разобраться.
Металлический стержень массой $m$ и длиной $L$ подвешен на двух легких проводах длиной $ l $ в магнитном поле, индукция $B $ которого направлена вертикально вниз (см.рис.). К точкам крепления проводов подключен конденсатор емкостью $C$, заряженный до напряжения $U$. Определить максимальный угол отклонения стержня от положения равновесия $\alpha$ после разрядки конденсатора, если она происходит за очень малое время. Сопротивление стержня и проводов не учитывать.

Изображение
Пытаюсь решить по закону сохранения энергии:
Вся энергия заряженного конденсатора $W_c = \frac{CU^2}{2}$ расходуется на увеличение энергии системы (стержень на проводах) и стержень поднимается на высоту $h$, отсюда можно найти угол.
1. Затруднение с нахождением потенциальной энергии системы в поднятом состоянии:
$W = mgh =mgl(1-\cos \alpha) = 2mgl\sin ^2 \frac{\alpha}{2} $, но это видимо не все? Как-то должна участвовать энергия магнитного поля, но не понимаю как, т.к. магнитное поле не потенциально?

2. Попутный вопрос: по логике, магнитное поле не совершает работу по перемещению движущегося заряда, т.к. их направления перпендикулярны, но ведь магнитное поле действует на заряд силой Лоренса и заставляет его двигаться. Так совершает или нет магнитное поле работу по перемещению движущегося заряда?

 Профиль  
                  
 
 Re: работа магнитного поля,сила Ампера
Сообщение05.04.2016, 16:04 
Заслуженный участник


25/02/08
2961
Stensen
1)Это задача на силу Ампера (задача как я понимаю школьная?). Так что найдите импульс, переданный стержню из закона Ньютона.
2)Во первых ЛоренЦа. Во вторых, работы не совершает. Изменения модуля скорости заряда то нет. И повнимательнее с формулировкой - ЗАСТАВИТЬ двигаться магнитное поле не может. Оно может только изменить направление вектора скорости.

 Профиль  
                  
 
 Re: работа магнитного поля,сила Ампера
Сообщение05.04.2016, 16:12 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
Stensen в сообщении #1112375 писал(а):
силой Лоренса
Он не Lawrence, а Lorentz. Это германоязычная (в данном случае — голландская) фамилия.

 Профиль  
                  
 
 Re: работа магнитного поля,сила Ампера
Сообщение05.04.2016, 17:07 
Аватара пользователя


26/11/14
761
Ms-dos4 в сообщении #1112380 писал(а):
Stensen
Это задача на силу Ампера. Так что найдите импульс, переданный стержню из закона Ньютона.
Таки понял: $ F_A \cdot \Delta t  = m \upsilon_2 - m \upsilon_1 $, где: $  \upsilon_1 = 0$ - нач.скорость стержня до включения рубильника и появления силы Ампера, тогда: $ \upsilon_2 = \frac{F_A \cdot \Delta t}{m} $, где: $F_A = BLI $ - сила Ампера, тогда:

$ \upsilon_2 = \frac{BLI \cdot \Delta t}{m} = \frac{B L q}{m} = \frac{BLCU}{m}$, где: $q = I \cdot \Delta t = CU $ - по определению силы тока и конденсатора. Далее по закону сохранения энергии:

$ \frac{m \upsilon_2^2}{2} = mgh = 2 mgl \sin^2 \frac{\alpha}{2}$, подставим сюда найденную ранее $\upsilon_2 $ и найдем угол. Поправьте плз, если что не так.

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение05.04.2016, 17:42 
Заслуженный участник


25/02/08
2961
Stensen
Ну вроде похоже на правду. У меня тоже получилось $\[\cos \alpha  = 1 - {(\frac{{BLCU}}{{\sqrt {2gl} m}})^2}\]$

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение05.04.2016, 18:03 
Аватара пользователя


26/11/14
761
спасибо!

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение05.04.2016, 18:41 
Заслуженный участник


09/05/12
25179
 !  Stensen, пожалуйста, перестаньте использовать в тексте слова вроде "плз".

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение05.04.2016, 19:41 
Аватара пользователя


26/11/14
761
ОК

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение06.04.2016, 07:35 
Заслуженный участник


28/12/12
7906
Ms-dos4 в сообщении #1112406 писал(а):
У меня тоже получилось $\[\cos \alpha  = 1 - {(\frac{{BLCU}}{{\sqrt {2gl} m}})^2}\]$

Тут еще неплохо бы отметить, как интерпретировать случай, когда в правой части получается число, меньшее $-1$.

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение06.04.2016, 10:54 
Аватара пользователя


26/11/14
761
DimaM в сообщении #1112614 писал(а):
Ms-dos4 в сообщении #1112406 писал(а):
У меня тоже получилось $\[\cos \alpha  = 1 - {(\frac{{BLCU}}{{\sqrt {2gl} m}})^2}\]$

Тут еще неплохо бы отметить, как интерпретировать случай, когда в правой части получается число, меньшее $-1$.
1. Возможно в этом случае качели сделают "солнышко", т.е. в верхней точке с максимальной потенциальной энергией останется еще и кинетическая энергия для дальнейшего прокручивания. Так?

2. Возник попутный вопрос. Если сравнить начальную энергию, запасенную в конденсаторе, и кинетическую энергию, полученную стержнем при включении рубильника и прохождении импульса тока, то увидим расхождение. Из найденного ранее: $ \upsilon_2 = \frac{BLCU}{m}$, и тогда:

(1) $ \frac{m \upsilon_2^2}{2} = \frac{m}{2} \frac{(BLCU)^2}{m^2} = \frac{B^2L^2C}{m} \cdot \frac{CU^2}{2} $, но из закона сохранения энергии должно быть:

(2) $ \frac{m \upsilon_2^2}{2} = \frac{CU^2}{2} $. Почему такое расхождение подскажите пожалуйста?

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение06.04.2016, 11:01 
Заслуженный участник


28/12/12
7906
Stensen в сообщении #1112647 писал(а):
Возможно в этом случае качели сделают "солнышко", т.е. в верхней точке с максимальной потенциальной энергией останется еще и кинетическая энергия для дальнейшего прокручивания. Так?

Так.

Stensen в сообщении #1112647 писал(а):
из закона сохранения энергии должно быть

Не-а, не должно. Еще неплохо бы выделение тепла учесть.

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение06.04.2016, 11:12 
Заслуженный участник


21/09/15
998
Более интересный вопрос - что будет если $\frac{B^2L^2C}{m}>1$ ? Откуда энергия?

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение06.04.2016, 11:26 
Заслуженный участник


01/06/15
1149
С.-Петербург
DimaM в сообщении #1112648 писал(а):
Еще неплохо бы выделение тепла учесть.

Какого тепла, если проводники у нас сверхпроводящие (по условию сопротивление равно нулю) и трением в точках подвеса, а также сопротивлением воздуха пренебрегаем?

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение06.04.2016, 11:36 
Заслуженный участник


28/12/12
7906
AnatolyBa в сообщении #1112651 писал(а):
Более интересный вопрос - что будет если $\frac{B^2L^2C}{m}>1$ ? Откуда энергия?

Замечу, что в движущейся в магнитном поле перемычке будет наводиться ЭДС.

Walker_XXI в сообщении #1112653 писал(а):
Какого тепла, если проводники у нас сверхпроводящие (по условию сопротивление равно нулю)

Тогда возникнут незатухающие колебания тока (индуктивность какая-то всегда есть), и условие задачи не будет выполнено. Именно что добротность должна быть достаточно маленькая.

 Профиль  
                  
 
 Re: Работа магнитного поля, сила Ампера
Сообщение06.04.2016, 11:39 
Заслуженный участник


21/09/15
998
DimaM в сообщении #1112658 писал(а):
Замечу, что в движущейся в магнитном поле перемычке будет наводиться ЭДС.

Э-э, я как бы хотел, чтобы автор вопроса подумал :-)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 25 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: peg59


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group