fixfix
2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4
 
 Re: Мастер-класс: виртуальные частицы
Сообщение23.03.2016, 01:38 
Заслуженный участник
Аватара пользователя


04/09/14
5390
ФТИ им. Иоффе СПб
rockclimber в сообщении #1108566 писал(а):
А это мне вообще ни о чем не говорит.
Ну, тогда дифференцируйте. Только таким способом Вы (если не провретесь ;) покажите, что при $r\ne 0$ выполняется $\Delta\varphi=0,$ а Вам надо $\Delta\varphi=\delta(x).$ Боюсь, что придется вспоминать старика Остроградского с Гауссом.

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение23.03.2016, 12:28 
Заслуженный участник


06/07/11
5640
кран.набрать.грамота
Поправлю решение с $\varphi = -\dfrac{1} {\sqrt{x^2 + y^2 + z^2}}$

$\dfrac {\partial \varphi} {\partial x} = x \, u^{-\frac {3} {2}}$

$\dfrac {\partial^2 \varphi} {\partial x^2} = x' \, u^{-\frac {3} {2}} + x \, (u^{-\frac {3} {2}})' = u^{-\frac {3} {2}} - 3 x^2 \, u^{-\frac {5} {2}} = u^{-\frac {3} {2}}  (1 - 3x^2/u)$

$\dfrac {\partial^2 \varphi} {\partial x^2} + \dfrac {\partial^2 \varphi} {\partial y^2} + \dfrac {\partial^2 \varphi} {\partial z^2} = u^{-\frac {3} {2}}  (1 - 3x^2/u) + u^{-\frac {3} {2}}  (1 - 3y^2/u) + u^{-\frac {3} {2}}  (1 - 3z^2/u) = u^{-\frac {3} {2}} (1 - 3x^2/u + 1 - 3y^2/u + 1 - 3z^2/u) = 3u^{-\frac {3} {2}} (1 - (x^2 + y^2 + z^2)/u) =  3u^{-\frac {3} {2}} (1 - 1) = 0$
Теперь все сходится, за исключением точки с координатами $(0, 0, 0)$, там функция $\varphi = -\dfrac{1} {\sqrt{x^2 + y^2 + z^2}}$ становится бесконечной, и, видимо, тут надо каким-то образом использовать $\rho=\delta(x)\,\delta(y)\,\delta(z)$, но как - я не знаю.

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение23.03.2016, 15:19 
Заслуженный участник
Аватара пользователя


04/09/14
5390
ФТИ им. Иоффе СПб
Без хитрых теорем можно попробовать так: заменим Вашу $u$ на $u+a$ ($a$ - константа). Тогда все Ваши вычисления сохранятся вплоть до предпоследнего равенства. Надо посмотреть, что будет в пределе $a\to 0.$

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение23.03.2016, 19:51 
Заслуженный участник


06/07/11
5640
кран.набрать.грамота
amon в сообщении #1108648 писал(а):
Без хитрых теорем можно попробовать так: заменим Вашу $u$ на $u+a$ ($a$ - константа).
Это как? Я попробовал замену $x^2 + y^2+z^2=u+a$, никакой разницы вроде бы.

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение23.03.2016, 21:11 
Заслуженный участник
Аватара пользователя


04/09/14
5390
ФТИ им. Иоффе СПб
rockclimber в сообщении #1108685 писал(а):
Это как? Я попробовал замену $x^2 + y^2+z^2=u+a$, никакой разницы вроде бы.
Я плохо сказал. Возьмем чуть другую функцию - $\varphi=\frac{1}{\sqrt{x^2 + y^2+z^2+a}}$. Она перейдет в нужную нам при $a\to 0$. При этом, при конечном $a$ никакой особенности в нуле нет. Кроме того, все Ваши вычисления производных будут такими же вплоть до $u^{-\frac {3} {2}} (1 - 3x^2/u + 1 - 3y^2/u + 1 - 3z^2/u),$ если под $u$ понимать $x^2 + y^2+z^2+a$. При $a>0$ получится ответ для производной, конечный везде. Теперь, проявив легкую изощренность ума, можно сообразить откуда возьмется $\delta$-функция в пределе $a\to 0$.

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение24.03.2016, 13:24 
Заслуженный участник
Аватара пользователя


04/09/14
5390
ФТИ им. Иоффе СПб
У меня в предыдущем сообщении была опечатка. Вместо $\varphi=\frac{1}{x^2 + y^2+z^2+a}$ должно быть $\varphi=\frac{1}{\sqrt{x^2 + y^2+z^2+a}}$. Исправил, виноват, каюсь.

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение24.03.2016, 13:58 
Заслуженный участник


14/10/14
1220
rockclimber
Как дифференцировать кусочно гладкие функции:

В точках гладкости обобщённая производная совпадает с обычной (которая не определена в точках нарушения гладкости). Точки нарушения гладкости могут быть изломами или скачками!

Скачок функции можно понимать как бесконечно быстрое её изменение, поэтому производная в этих точках должна быть "бесконечной" (и при этом, понятное дело, пропорциональной величине скачка). Поэтому для каждой из точек нарушения гладкости надо прибавить $\delta$-функцию ("обращающуюся в бесконечность" в этой точке), умноженную на величину скачка.

Кратко: $f'=f'_{\text{обычная}}+\Sigma\,\text{(скачок функции в точке }x_i)\cdot\delta(x-x_i)$, где $x_i$ - точки нарушения гладкости. (Если скачок нулевой, то приходится там доопределять функцию нулём: $0\cdot\delta$\,\equiv0$ - с умножением на $0$ даже у обобщённых функций всё по-нормальному!)

Таким образом вы можете "доказать" ваши формулы
rockclimber в сообщении #1108543 писал(а):
$|x|' = sgn x$

$|x|'' = 2 \delta(x)$

Обратите внимание, что вышеприведённые рассуждения "наивны", но при этом про эти обобщённые функции (в частности $\delta$-функцию) существует строгая теория, в которой, например, приведённая мной формула доказывается строго. Однако вдаваться в это здесь, наверное, нет надобности. Пока же достаточно думать, что $\delta$-функция
1) равна нулю во всех точках пространства, кроме $0$ (начало координат),
2) интеграл от неё по любой окрестности нуля равен $1$.

$\delta(x)\delta(y)\delta(z)$ - это то же, что $\delta(x,y,z)$ (а последнее - это 3-мерная $\delta$-функция, равная $0$ везде кроме $(0, 0, 0)$ и такая, что интеграл от неё и проч.).

amon

(Оффтоп)


 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение24.03.2016, 23:06 
Заслуженный участник
Аватара пользователя


30/01/06
72407
arseniiv в сообщении #1108546 писал(а):
Видимо, Munin потерял двойку

Да, спасибо!

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение25.03.2016, 00:49 
Заслуженный участник


27/04/09
28128
Это rockclimber спасибо, за мной только тривиальный вывод.

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение26.03.2016, 03:22 
Заслуженный участник


29/09/14
1272
rockclimber

Вот, уважаемый amon подал хорошую мысль:
amon в сообщении #1108702 писал(а):
... можно сообразить откуда возьмется $\delta$-функция в пределе $a\to 0.$

Путём введения вспомогательного параметра $a$ c последующим устремлением его к нулю можно немало понять про дельта-функцию даже без помощи википедии.

Правда, речь тут я веду о понимании лишь на "физико-техническом" уровне (т.е. о понимании, которому мы радуемся, пока математики не надерут нам уши за такое "понимание"). Мысль состоит в том, чтобы заменить исходную функцию $F(x),$ имеющую особенность в точке $x=0,$ сглаженной функцией $f(x,a),$ производные которой легко вычислить и при $x=0.$ Сглаженную функцию мы руками подберём так, чтобы $f(x,a) \to F(x)$ при $a \to 0.$ Кроме того, вместо общих выводов ограничимся рисунками с частными примерами; на языке рисунков производная это "наклон касательной" к графику функции (точнее: тангенс угла наклона), а определённый интеграл от функции одной пременной это площадь под графиком на определённом отрезке оси $x.$

(К заданию 1)


(К заданию 2)


 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение27.04.2016, 17:39 
Аватара пользователя


13/08/13

4323

(Оффтоп)


 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение27.04.2016, 18:06 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Когда до них доберутся. "Мастер-класс" - это не книжка и не лекция. Он движется не со скоростью учителя, а со скоростью учеников.

 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение27.04.2016, 18:13 
Аватара пользователя


13/08/13

4323

(Оффтоп)


 Профиль  
                  
 
 Re: Мастер-класс: виртуальные частицы
Сообщение27.04.2016, 18:43 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Ну что ж.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 59 ]  На страницу Пред.  1, 2, 3, 4

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group