2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Интеграл произведения степени x и корня
Сообщение06.03.2016, 00:13 
Аватара пользователя


02/12/13
57
$\int\limits_{a}^{b}(x-z)^{-\frac{2}{5}}x^kdx$, $k=0,1,2...$, $a \leqslant z<b$
Пролистал Фихтенгольца, ни один метод не подходит. По частям мне тоже ничего не дало...

 Профиль  
                  
 
 Re: Интеграл произведения степени x и корня
Сообщение06.03.2016, 00:42 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Попробуйте разбить область интегрирования точкой $z$ на две части и на каждой части свести интеграл к Бета-функции Эйлера.

 Профиль  
                  
 
 Re: Интеграл произведения степени x и корня
Сообщение06.03.2016, 08:37 
Заслуженный участник


11/05/08
32166
Kink в сообщении #1104470 писал(а):
Пролистал Фихтенгольца, ни один метод не подходит.

Попробуйте теперь Фихтенгольца прочитать. Это дифференциальный бином (он же биномиальный дифференциал).

 Профиль  
                  
 
 Re: Интеграл произведения степени x и корня
Сообщение06.03.2016, 11:47 


25/08/11

1074
Или руками можно: скобку буквой+бином Ньютона для натуральной степени.

 Профиль  
                  
 
 Re: Интеграл произведения степени x и корня
Сообщение06.03.2016, 21:15 
Аватара пользователя


02/12/13
57
ewert в сообщении #1104507 писал(а):
Kink в сообщении #1104470 писал(а):
Пролистал Фихтенгольца, ни один метод не подходит.

Попробуйте теперь Фихтенгольца прочитать. Это дифференциальный бином (он же биномиальный дифференциал).

Brukvalub в сообщении #1104473 писал(а):
Попробуйте разбить область интегрирования точкой $z$ на две части и на каждой части свести интеграл к Бета-функции Эйлера.

sergei1961 в сообщении #1104536 писал(а):
Или руками можно: скобку буквой+бином Ньютона для натуральной степени.

Спасибо, с пролистыванием Фихтенгольца я явно промахнулся :)
Получил рекуррентную формулу относительно $k$, посчитал при $k=0$, всё здорово :)

 Профиль  
                  
 
 Re: Интеграл произведения степени x и корня
Сообщение06.03.2016, 22:44 


25/08/11

1074
Так после бинома можно явно проинтегрировать-получится ответ в виде конечной суммы. Зачем рекуррентно?

 Профиль  
                  
 
 Re: Интеграл произведения степени x и корня
Сообщение06.03.2016, 22:59 
Аватара пользователя


02/12/13
57
sergei1961 в сообщении #1104733 писал(а):
Так после бинома можно явно проинтегрировать-получится ответ в виде конечной суммы. Зачем рекуррентно?

Да, этот вариант тоже получил, но вычисление этого интеграла надо было запрограммировать (момент весовой функции), в том числе при довольно больших $k$, а если нужно считать момент какого-то порядка, то нужно считать и моменты низших порядков, поэтому через рекуррентную формулу будет считать быстрее.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: confabulez


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group