Получается, можно так сказать (?) - то, что в некоторой ИСО 4-мерная линия "чего-то" выглядит всюду времениподобной, необходимо, но, недостаточно для того, чтобы признать это "нечто" реальной досветовой частицей.
Этого даже недостаточно, чтобы признать это "нечто" реальной мировой линией.
Ну давайте возьмём для аналогии обычную геометрию. Острый угол между двумя прямыми
и
В нём можно провести биссектрису - это будет неким инвариантным "средним" между двумя прямыми, независимым от поворотов. Но можно и извратиться:
- Введём прямоугольную систему координат
в которой прямая
совпадает с осью ординат, а вершина угла помещена в начало координат. Теперь возьмём отрезки, секущие две исходные прямые
и
параллельные оси абсцисс
Середины этих отрезков будут ложиться на какую-то прямую, но будет ли она в каком-то инвариантном смысле "средним"?
- Введём другую прямоугольную систему координат -
Проведём здесь аналогичные секущие отрезки, и линию их середин. Она не будет совпадать ни с биссектрисой, ни с прямой из предыдущего пункта.
- Введём ещё третью (четвёртую, пятую...) произвольную систему координат
... Каждая из них будет давать свою прямую середин отрезков.
В общем, ерунда. Проще взять биссектрису, и не мучиться.
Эта аналогия - не совсем прямая, но может дать представление о том, что даже если вы используете изначально "физические" (4-мерные, инвариантные) величины, но строите из них что-то не очень аккуратно, у вас в итоге может получиться неинвариантная величина.