Если речь идёт об алгебраических диофантовых уравнениях, то запись с факториалом таковой не является. Если речь идёт про диофантовые уравнения с произвольными целочисленными функциями, то никакие факториалы не нужны, любое подмножество
имеет вид
для некоторой функции
.
Мы расходимся в определении диофантова уравнения. Под диофантовым уравнением я понимаю:
https://ru.wikipedia.org/wiki/%D0%94%D0 ... 0%B8%D0%B5В этом случае Ваш и мой примеры являются диофантовыми уравнениями, решениями которого являются простые числа.
Вы же считаете, что слева обязательно должен стоять многочлен. Такой вариант в литературе также распространен. Правда в этом случае не понятно, зачем используется, в том числе и Вами, термин алгебраическое диофантово уравнение, если все диофантовы уравнения алгебраические. При этом определении наши примеры не являются диофантовыми уравнениями.
Теперь вернусь к обсуждаемой теме -диофантовости множества простых чисел. Об этом я говорил в сообщении:
По теореме Вильсона
простое, если
делится на
. Поэтому множество простых чисел является проекцией множества решений системы уравнений:
, которое диофантово в силу диофантовости
.
Доказательство диофантовости факториала приведено в книге Манина и Панчишкина на стр 95-96, поэтому множество простых чисел является диофантовым. Это означает, в частности, что множество простых чисел является перечислимым, поэтому на основании доказательства Матиясевича совпадает с множеством положительных значений, принимаемых при целых параметрах некоторым полиномом с целыми коэффициентами. Это и объединяет два обсуждаемых вопроса в данной теме.