Приблизьте немного больший шар (1) к меньшему (2). Посмотрите, на сколько изменится потенциальная энергия системы.
Верните назад.
Приблизьте на столько же меньший шар (2) к большему (1). Посмотрите, на сколько изменится потенциальная энергия системы.
Верните назад.
Изменилась ли

оба раза на одну величину?

Если да, потенциальная энергия прошла проверку на корректность, а вот с вычислением сил у Вас что-то не в порядке — они должны быть связаны с

по формулам



Если величины разные, потенциальная энергия системы у Вас почему-то зависит не только от расстояния между ними, но и от их положения в (вероятно, бесконечной и однородной) системе капель. Нет трансляционной инвариантности, а должна быть.
Приблизил большой шар к меньшему, вернул назад.
Приблизил на столько же меньший шар к большему, вернул назад.
Потенциальная энергия системы в первом случае изменилась в несколько раз меньше, чем во втором.
Явная ошибка где-то. Буду искать. Спасибо за участие.