2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 14:08 
Аватара пользователя
Цитата:
Какие конкретные применения имеют аксиоматические теории множеств?

Любая математическая теория является аксиоматической. Если теория не аксиоматическая, её не в полной мере можно вообще отнести к математике. В книгах по философии иногда говорят иначе, но это так. Если речь о теории множеств, то вне аксиоматических теорий неизбежны парадоксы, а значит, нельзя быть уверенным на 100% ни в каких рассуждениях.

Про то, как строится логика без обращения к наивным теориям, я уверен, Вам здесь расскажут (не я).

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 14:18 
Brukvalub, а я откуда знать должен, что там обсуждалось? Ну откуда я могу знать, скажите?
Поиском ничего не нашел. Может дадите прямые ссылки?
Цитата:
вне аксиоматических теорий неизбежны парадоксы, а значит, нельзя быть уверенным на 100% ни в каких рассуждениях.

Парадокс - не противоречие. Поэтому интуитивные рассуждения применяются, хотя конечно уверенности это не прибавляет :D
Цитата:
как строится логика без обращения к наивным теориям, я уверен, Вам здесь расскажут (не я).

Очень надеюсь на это. Я слежу за темой.

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 14:26 
Аватара пользователя
Unx в сообщении #1080585 писал(а):
Парадокс - не противоречие.

Напротив, парадокс и противоречие - одно и то же. Во всяком случае, это относится к парадоксам теории множеств. В каких-то других областях да, например говорят "парадокс Банаха-Тарского" или даже "парадоксы теории относительности", имея в виду странные для нашего здравого смысла факты из этих теорий - причём никаких противоречий здесь нет. Но когда говорят о парадоксах наивной теории множеств, имеют в виду именно противоречия.

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 14:35 
Mikhail_K, странно говорить о противоречивости при отсутствии формальных систем. Но мне кажется, я вас понял.

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 14:37 
Аватара пользователя
Unx в сообщении #1080585 писал(а):
Brukvalub, а я откуда знать должен, что там обсуждалось? Ну откуда я могу знать, скажите?
Поиском ничего не нашел. Может дадите прямые ссылки?

Скажу. Соотношения между наивной и аксиоматическими теориями множеств лежат близко к основаниям математики, это почти философия, поэтому всегда есть некоторое количество людей, живо интересующихся этими вопросами. Данный форум работает 10 с лишним лет, понятно, что на нем должны были обсуждаться подобные вопросы.
Одним из основных специалистов по обсуждаемой тематике является ЗУ Someone. Воспользуйтесь поиском, отберите те из его ответов, в которых он обсуждает интересующий вас вопрос, внимательно проанализируйте отобранные сообщения. Если и после этого останутся вопросы - задавайте. :D
Да, еще по этим вопросам неоднократно высказывался ЗУ Xaositect, советую проделать аналогичную работу с его сообщениями. :D

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 14:53 
Поумничать решил. Вспомнил, что по Бору утверждение является глубоким, если отрицание является глубоким. Вот здесь утверждение: Если теория не аксиоматическая, её не в полной мере можно вообще отнести к математике.
Для меня и его отрицание является осмысленным: Если теория аксиоматическая, её не в полной мере можно вообще отнести к математике. (хотя это не совсем отрицание...) Потому что не особенно такие теории применяются к реальным задачам. Не видел, чтобы автор из аксиом теории множеств вывел что-то полезное для специальных функций или теории сигналов.

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 15:35 
Аватара пользователя
Давайте немного разберемся и разделим термины, а то тут часто смешиваются разные вещи, а тема и так уже полуфилософская.

Есть неформальная математика, которая делается людьми на естественном языке. Есть формальные математические теории, которые используют формальные языки. И та, и другая математика основывается на аксиомах и правилах вывода. В одном случае это утверждения естественного языка об абстрактных объектах (о сути которых мы говорить не будем, ибо это уже философия) и правила логики, по которым одни утверждения выводятся из других. В другом случае это формальные строки из формального языка и алгоритмы работы с ними для получения и проверки формального доказательства.

Неформальная теория может быть формализована, то есть ее аксиомы и правила могут быть зафиксированы, описаны простым образом, и записаны на формальном языке. Это, в некотором смысле, способ "договориться о правилах игры" - мы пытаемся записать наши правила максимально однозначно.

Математическая логика изучает формальные математические теории. То есть у нас всегда есть теория, которую мы изучаем, и теория, с помощью которой мы изучаем - метатеория. Изначально метатеорией может выступать неформальная математика. Но полезны также и формальные метатеории, например, при доказательстве теоремы Геделя о неполноте формальная арифметика выступает в качестве своей же метатеории.

Для того, чтобы определить семантические понятия, напр. модель теории, в метатеории должна быть какая-то теория множеств. Она, вообще говоря, может быть очень маленькая, например, в Reverse Mathematics Фридмана в качестве метатеории часто выступает подсистема арифметики второго порядка $RCA_0$, которая слабее арифметики Пеано в своей первопорядковой части. Обычно же в качестве метатеории выступает неформальная теория множеств, а если нам все-таки хочется конкретизировать правила (например, если некоторые свойства универсума теории множеств важны для наших результатов) - то $ZFC$ или какой-нибудь более-менее произвольный топос.

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 17:30 
Цитата:
Для того, чтобы определить семантические понятия, напр. модель теории, в метатеории должна быть какая-то теория множеств.

А это может обернуться тем, что мы будем получать 'неэквивалентные' семантические понятия в зависимости от того какую теорию множеств используем?

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 18:28 
Аватара пользователя
Unx в сообщении #1080637 писал(а):
А это может обернуться тем, что мы будем получать 'неэквивалентные' семантические понятия в зависимости от того какую теорию множеств используем?
Да.

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 18:45 
Для того, чтобы доказать непротиворечивость теории, необходимо найти модель. Теперь вопрос можно поставить так: какую именно модель? Как нужно понимать сам этот термин?

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 19:02 
Аватара пользователя
См. Ершов Ю.Л., Палютин Е.А. Математическая логика. — М.: Наука, 1987. — 336 с.

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 19:03 
Аватара пользователя
Unx в сообщении #1080656 писал(а):
Для того, чтобы доказать непротиворечивость теории, необходимо найти модель.
Во-первых, для того, чтобы доказать непротиворечивость теории, необязательно строить модель, это только один из способов. Во-вторых, в данном случае мы строим модель теории $T$ в какой-то метатеории $M$ и говорим, что теория $M$ доказывает непротиворечивость теории $T$. Часто под $M$ по умолчанию подразумевается $ZFC$.

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 19:47 
Есть два определения. Первое: формальная система непротиворечива, если не все формулы этой теории выводимы. Второе: формальная система называется непротиворечивой, если существует модель. Как связаны два эти определения?
Цитата:
мы строим модель теории $T$ в какой-то метатеории $M$ и говорим, что теория $M$ доказывает непротиворечивость теории $T$

Видимо это означает, что метатеорию можно подобрать и получить любой желаемый результат: как наличие так и отсутствие модели. Получается так?

 
 
 
 Re: Логика и теория множеств
Сообщение08.12.2015, 20:27 
А у вас есть доказательство того, что можно получить любой желаемый результат?

 
 
 
 Re: Логика и теория множеств
Сообщение09.12.2015, 13:39 
Аватара пользователя
Unx в сообщении #1080693 писал(а):
Есть два определения. Первое: формальная система непротиворечива, если не все формулы этой теории выводимы. Второе: формальная система называется непротиворечивой, если существует модель. Как связаны два эти определения?
Обычно второе называется выполнимой теорией. Эти два понятия эквивалентны, если в метатеории справедлива теорема Геделя о полноте.

arseniiv в сообщении #1080714 писал(а):
А у вас есть доказательство того, что можно получить любой желаемый результат?
Конечно можно. Можно, например, рассмотреть метатеории $ZFC + \operatorname{Con}(ZFC)$ и $ZFC + \neg \operatorname{Con}(ZFC)$ и что они говорят о выполнимости $ZFC$.

 
 
 [ Сообщений: 38 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group