Нужна ваша помощь.
Назовём вектор буквой

принадлежащий векторному действительному пространству, а ковектор буквой

принадлежащий дуально-сопряжённому векторному действительному пространству.
(самый важный вопрос 3, но всё же спрошу всё, чтоб был понятен ход моих рассуждений)
1) Правильно ли я понимаю что в метрическом пространстве (пусть евклидовом) существует изоморфизм между векторным пространством и дуальным к нему, и мы можем написать

?
2) Если кроме того, базис в векторном пространстве выбран ортогональным (видимо тогда и в ортогональном пространстве базис будет ортогональным), то мы можем не различать верхние и нижнее индексы?
Заменим действительное пространство на комплексное.

будем теперь называть кетвектором (спинором если размерность пространства = 2), а бравектором (коспинором если размерность пространства = 2).
3) Изоморфизма теперь не существует, в этом и кроется глубокий смысл того, что мы различаем бра и кет вектора (скажем в квантмехе), но по теореме Риса-Фреше можно хотя бы соорудить скалярное произведение, то есть сделать пространство метрическим. Верно?
4) Верхние и нижние индексы не различаем если выбран ортогональный базис. Верно?
Я исхожу из этого
пункта Спасибо.